Advertisement

Accelerating Molecular Dynamics Simulations on Heterogeneous Architecture

  • Yueqing WangEmail author
  • Yong Dou
  • Song Guo
  • Yuanwu Lei
  • Baofeng Li
  • Qiang Wang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 592)

Abstract

Molecular dynamics (MD) is an important computational tool used to simulate chemical and physical processes at the molecular level. MD simulations focus on the motion of the interaction of numerous molecules or atoms. Most scholars focus on accelerating MD on multicore central processing units (CPUs) or other coprocessors, such as graphics processing unit (GPU) or many integrated cores [1]. However, most researchers disregard CPU resources and merely perceive a CPU as a controller when using coprocessors. Thus, hybrid computing cannot be achieved, thereby resulting in the waste of CPU computing resources. In this study, we propose three strategies to accelerate MD simulation. The first strategy uses Compute Unified Device Architecture [2] to rewrite the MD code and to run applications on a single-core CPU-GPU platform. This strategy can achieve satisfactory performance but does not make use of CPU resources to compute for most research activities. In the second strategy, the CPU is set to compute the pair force of a small part of molecules along with the GPU after accomplishing the task of starting the GPU computation. The third strategy is applicable under the condition that the GPU is shared by numerous MPI processes, each of which uses the GPU separately. In this situation, the performance can be improved.

Keywords

Molecular dynamics GPU Hybrid parallel Accelerate 

Notes

Acknowledgement

This work is partially supported by NSFC (61125201).

References

  1. 1.
    Intel Xeon Phi Coprocessor. https://software.intel.com/zh-cn/mic-developer. Accessed March 2014
  2. 2.
    CUDATM 4.0 Programming Guide, NVIDIAR Corporation. http://www.nvidia.com (2011). Accessed November 2013
  3. 3.
    Salomon-Ferrer, R., Goetz, A.W., Poole, D., Le Grand, S., Walker, R.C.: Routine microsecond molecular dynamics simulations with AMBER - Part II: Particle Mesh Ewald (PME). J. Chem. Theory Comput. 9, 3878–3888 (2013)CrossRefGoogle Scholar
  4. 4.
    Brooks, B.R., Brooks III, C.L., Mackerell, A.D., Nilsson, L., Petrella, R.J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A.R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R.W., Post, C.B., Pu, J.Z., Schaefer, M., Tidor, B., Venable, R.M., Woodcock, H.L., Wu, X., Yang, W., York, D.M., Karplus, M.: CHARMM: the biomolecular simulation program. J. Comp. Chem. 30, 1545–1615 (2009)CrossRefGoogle Scholar
  5. 5.
    Lindahl, E., van der Spoel, D., Hess, B., et. al.: http://www.gromacs.org/GPU_acceleration
  6. 6.
    LAMMPS Molecular Dynamics Simulator. http://lammps.sandia.gov/
  7. 7.
    Rodrigues, C.I., Hardy, D.J., Stone, J.E.: GPU acceleration of cutoff pair potentials for molecular modeling applications. In: CF 2008 Proceedings of the 5th Conference on Computing Frontiers, vol. 32, no. 4, pp. 273–282. ACM, New York, NY, USA (2008)Google Scholar
  8. 8.
    Brown, W.M., Wang, P., Plimpton, S.J., Tharrington, A.N.: Implementing molecular dynamics on hybrid high performance computers – short range forces. Comput. Phys. Commun. 182(4), 898–911 (2011)CrossRefzbMATHGoogle Scholar
  9. 9.
    Xu, J., Ren, Y., Ge, W., Yu, X., Yang, X., Li, J.: Molecular dynamics simulation of macromolecules using graphics processing unit. Comput. Phys. Commun. 182(4), 921–942 (2011)Google Scholar
  10. 10.
    Friedrichs, M.S., Eastman, P., Vaidyanathan, V., Houston, M.: Accelerating Molecular Dynamic Simulation on Graphics Processing Units, Wiley Inter Science. www.interscience.wiley.com (2009)Google Scholar
  11. 11.
    Kylasa, S.B., Aktulga, H.M., Grama, A.Y.: PuReMD-GPU: a reactive molecular dynamic simulation package for GPUs. J. Comput. Phys. 272(1), 343–359 (2014)CrossRefGoogle Scholar
  12. 12.
    Wu, Q., Yang, C., Tang, T., Xiao, L.: Exploiting hierarchy parallelism for molecular dynamics on a petascale heterogeneous system. J. Parallel Distrib. Comput. 73(12), 1592–1604 (2013)CrossRefGoogle Scholar
  13. 13.
    Yang, C., Wu, Q., Tang, T., Wang, F., Xue, J.: Programming for scientific computing on peta-scale heterogeneous parallel systems. J. Cent. South Univ. Technol. 20, 1189–1203 (2013)CrossRefGoogle Scholar
  14. 14.
    Zhang, X., Guo, W., Qin, X., Zhao, X.: A highly extensible frame- work for molecule dynamic simulation on GPUs. In: The 2013 International Conference on Parallel and Distributed, Processing Techniques and Applications (PDPTA 2013) (2013)Google Scholar
  15. 15.
    Hwu, W.W., Stratton, J.A., Stone, S.S.: MCUDA: an efficient implementation of CUDA kernels for multi-core CPUs. In: Amaral, J.N. (ed.) LCPC 2008. LNCS, vol. 5335, pp. 16–30. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Linderman, M.D., Collins, J.D., Wang, H., Meng, T.H.: Merge: a programming model for heterogeneous multi-core systems. ACM SIGARCH Comput. Archit. News- ASPLOS 36, 287–296 (2008)CrossRefGoogle Scholar
  17. 17.
    Pennycook, S.J., Hammond, S.D., Jarvis, S.A., Mudalige, G.R.: Performance analysis of a hybrid MPI/CUDA implementation of the NAS-LU benchmark. In: ACM SIG- METRICS Performance Evaluation Review Special Issue on the 1st International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computing Systems (PMBS 2010), vol. 38, no. 4, pp. 23–29. ACM, New York, NY, USA (2011)Google Scholar
  18. 18.
    Jacobsen, D.A., Thibault, J.C., Senocak, I.: An MPI-CUDA implementation for massively parallel incompressible flow computations on multi-GPU clusters. In: 48th AIAA Aerospace Sciences Meeting and Exhibit, pp. 1–16, Orlando, Florida (2010)Google Scholar
  19. 19.
    Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., Hanrahan, P.: Brook for GPUs: stream computing on graphics hardware. ACM Trans. Graph. 23, 777–786 (2004)CrossRefGoogle Scholar
  20. 20.
    Technical Overview ATI Stream Computing. http://developer.amd.com/gpuassets/StreamComputingOverview.pdf (2009). Accessed November 2011
  21. 21.
    Cool, M.M., Toit, S.D.: Metaprogramming GPUs with Sh (2004)Google Scholar
  22. 22.
    Khronos Group. OpenCL. http://www.khronos.org/opencl/ (2008)
  23. 23.
    Openfoam: The Open Source CFD Toolbox, userguide. http://www.openfoam.org. Accessed August 2010

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yueqing Wang
    • 1
    Email author
  • Yong Dou
    • 1
  • Song Guo
    • 1
  • Yuanwu Lei
    • 1
  • Baofeng Li
    • 1
  • Qiang Wang
    • 1
  1. 1.National Laboratory for Parallel and Distributed ProcessingNational University of Defense TechnologyChangshaChina

Personalised recommendations