Skip to main content

Accelerating Molecular Dynamics Simulations on Heterogeneous Architecture

  • Conference paper
  • First Online:
Book cover Computer Engineering and Technology (NCCET 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 592))

Included in the following conference series:

Abstract

Molecular dynamics (MD) is an important computational tool used to simulate chemical and physical processes at the molecular level. MD simulations focus on the motion of the interaction of numerous molecules or atoms. Most scholars focus on accelerating MD on multicore central processing units (CPUs) or other coprocessors, such as graphics processing unit (GPU) or many integrated cores [1]. However, most researchers disregard CPU resources and merely perceive a CPU as a controller when using coprocessors. Thus, hybrid computing cannot be achieved, thereby resulting in the waste of CPU computing resources. In this study, we propose three strategies to accelerate MD simulation. The first strategy uses Compute Unified Device Architecture [2] to rewrite the MD code and to run applications on a single-core CPU-GPU platform. This strategy can achieve satisfactory performance but does not make use of CPU resources to compute for most research activities. In the second strategy, the CPU is set to compute the pair force of a small part of molecules along with the GPU after accomplishing the task of starting the GPU computation. The third strategy is applicable under the condition that the GPU is shared by numerous MPI processes, each of which uses the GPU separately. In this situation, the performance can be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Intel Xeon Phi Coprocessor. https://software.intel.com/zh-cn/mic-developer. Accessed March 2014

  2. CUDATM 4.0 Programming Guide, NVIDIAR Corporation. http://www.nvidia.com (2011). Accessed November 2013

  3. Salomon-Ferrer, R., Goetz, A.W., Poole, D., Le Grand, S., Walker, R.C.: Routine microsecond molecular dynamics simulations with AMBER - Part II: Particle Mesh Ewald (PME). J. Chem. Theory Comput. 9, 3878–3888 (2013)

    Article  Google Scholar 

  4. Brooks, B.R., Brooks III, C.L., Mackerell, A.D., Nilsson, L., Petrella, R.J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A.R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R.W., Post, C.B., Pu, J.Z., Schaefer, M., Tidor, B., Venable, R.M., Woodcock, H.L., Wu, X., Yang, W., York, D.M., Karplus, M.: CHARMM: the biomolecular simulation program. J. Comp. Chem. 30, 1545–1615 (2009)

    Article  Google Scholar 

  5. Lindahl, E., van der Spoel, D., Hess, B., et. al.: http://www.gromacs.org/GPU_acceleration

  6. LAMMPS Molecular Dynamics Simulator. http://lammps.sandia.gov/

  7. Rodrigues, C.I., Hardy, D.J., Stone, J.E.: GPU acceleration of cutoff pair potentials for molecular modeling applications. In: CF 2008 Proceedings of the 5th Conference on Computing Frontiers, vol. 32, no. 4, pp. 273–282. ACM, New York, NY, USA (2008)

    Google Scholar 

  8. Brown, W.M., Wang, P., Plimpton, S.J., Tharrington, A.N.: Implementing molecular dynamics on hybrid high performance computers – short range forces. Comput. Phys. Commun. 182(4), 898–911 (2011)

    Article  MATH  Google Scholar 

  9. Xu, J., Ren, Y., Ge, W., Yu, X., Yang, X., Li, J.: Molecular dynamics simulation of macromolecules using graphics processing unit. Comput. Phys. Commun. 182(4), 921–942 (2011)

    Google Scholar 

  10. Friedrichs, M.S., Eastman, P., Vaidyanathan, V., Houston, M.: Accelerating Molecular Dynamic Simulation on Graphics Processing Units, Wiley Inter Science. www.interscience.wiley.com (2009)

    Google Scholar 

  11. Kylasa, S.B., Aktulga, H.M., Grama, A.Y.: PuReMD-GPU: a reactive molecular dynamic simulation package for GPUs. J. Comput. Phys. 272(1), 343–359 (2014)

    Article  Google Scholar 

  12. Wu, Q., Yang, C., Tang, T., Xiao, L.: Exploiting hierarchy parallelism for molecular dynamics on a petascale heterogeneous system. J. Parallel Distrib. Comput. 73(12), 1592–1604 (2013)

    Article  Google Scholar 

  13. Yang, C., Wu, Q., Tang, T., Wang, F., Xue, J.: Programming for scientific computing on peta-scale heterogeneous parallel systems. J. Cent. South Univ. Technol. 20, 1189–1203 (2013)

    Article  Google Scholar 

  14. Zhang, X., Guo, W., Qin, X., Zhao, X.: A highly extensible frame- work for molecule dynamic simulation on GPUs. In: The 2013 International Conference on Parallel and Distributed, Processing Techniques and Applications (PDPTA 2013) (2013)

    Google Scholar 

  15. Hwu, W.W., Stratton, J.A., Stone, S.S.: MCUDA: an efficient implementation of CUDA kernels for multi-core CPUs. In: Amaral, J.N. (ed.) LCPC 2008. LNCS, vol. 5335, pp. 16–30. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Linderman, M.D., Collins, J.D., Wang, H., Meng, T.H.: Merge: a programming model for heterogeneous multi-core systems. ACM SIGARCH Comput. Archit. News- ASPLOS 36, 287–296 (2008)

    Article  Google Scholar 

  17. Pennycook, S.J., Hammond, S.D., Jarvis, S.A., Mudalige, G.R.: Performance analysis of a hybrid MPI/CUDA implementation of the NAS-LU benchmark. In: ACM SIG- METRICS Performance Evaluation Review Special Issue on the 1st International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computing Systems (PMBS 2010), vol. 38, no. 4, pp. 23–29. ACM, New York, NY, USA (2011)

    Google Scholar 

  18. Jacobsen, D.A., Thibault, J.C., Senocak, I.: An MPI-CUDA implementation for massively parallel incompressible flow computations on multi-GPU clusters. In: 48th AIAA Aerospace Sciences Meeting and Exhibit, pp. 1–16, Orlando, Florida (2010)

    Google Scholar 

  19. Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., Hanrahan, P.: Brook for GPUs: stream computing on graphics hardware. ACM Trans. Graph. 23, 777–786 (2004)

    Article  Google Scholar 

  20. Technical Overview ATI Stream Computing. http://developer.amd.com/gpuassets/StreamComputingOverview.pdf (2009). Accessed November 2011

  21. Cool, M.M., Toit, S.D.: Metaprogramming GPUs with Sh (2004)

    Google Scholar 

  22. Khronos Group. OpenCL. http://www.khronos.org/opencl/ (2008)

  23. Openfoam: The Open Source CFD Toolbox, userguide. http://www.openfoam.org. Accessed August 2010

Download references

Acknowledgement

This work is partially supported by NSFC (61125201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueqing Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Y., Dou, Y., Guo, S., Lei, Y., Li, B., Wang, Q. (2016). Accelerating Molecular Dynamics Simulations on Heterogeneous Architecture. In: Xu, W., Xiao, L., Li, J., Zhang, C. (eds) Computer Engineering and Technology. NCCET 2015. Communications in Computer and Information Science, vol 592. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49283-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49283-3_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49282-6

  • Online ISBN: 978-3-662-49283-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics