A High-PSRR CMOS Bandgap Reference Circuit
- 595 Downloads
Abstract
The paper presents a high power supply rejection ratio (PSRR) CMOS bandgap reference (BGR). The circuit adopts a pre-regulator. To facilitate comparison, BGRs with- and without- pre-regulator are, respectively, designed and simulated in the 0.13 μm standard CMOS process technology. Simulation results show that the PSRR of the designed BGR with pre-regulator achieves, respectively, −107.3 dB, −106.6 dB and−75 dB at 100 Hz, 1 kHz and 100 kHz, while PSRR of BGR without pre-regulator has only, respectively, −70.6 dB, −70.5 dB and −65 dB at 100 Hz, 1 kHz and 100 kHz. The BGR with pre-regulator achieves a bandgap voltage reference of 0.76 V, a temperature coefficient of 0.55 ppm/°C in the temperature range from −25 °C to 125 °C, and a deviation of output voltage of 0.08 mV when the power supply voltage changed from 2.6 V to 6.2 V.
Keywords
Bandgap reference Power supply rejection ratio Pre-regulatorReferences
- 1.Dey, A., Bhattacharyya, T.K.: A CMOS bandgap reference with high PSRR and improved temperature stability for system-on-chip applications. In: IEEE Conference Electronics Devices Solid-State Circuits, pp. 1–2 (2011)Google Scholar
- 2.Zhang, H., Chen, P.K., Tan, M.T.: A high PSRR voltage reference for DC-to-DC converter applications. In: IEEE International Symposium on Circuits and Systems, pp. 816–819 (2009)Google Scholar
- 3.Qiao, N.S., Liu, L., Yu, F., Liu, Z.L.: A low power 14-bit 1 MS/s differential SAR ADC with on chip multi-segment bandgap reference. In: IEEE International Conference on Solid-State and Integrated Circuit Technology, pp. 205–207 (2011)Google Scholar
- 4.Charalambos, M.A., Savvas, K., Julius, G.: A novel wide-temperature-range 3.9 ppm/°C CMOS bandgap reference Circuit. IEEE J. Solid-State Circuits 27(2), 574–581 (2012)Google Scholar
- 5.Banba, H., Shiga, H., Umezawa, A., Miyaba, T., Tanzawa, T., Atsumi, S., Sakui, K.: A CMOS bandgap reference circuit with sub-1-V operation. IEEE J. Solid-State Circ. 34(5), 670–674 (1999)CrossRefGoogle Scholar
- 6.Xu, X., Yuan, H.H., Chen, S.J., Liu, Q.: Design of super performance CMOS bandgap voltage reference and current refence. Semicond. Technol. 36(3), 229–233 (2011). (in chinese)Google Scholar
- 7.Tham, K.M., Nagaraj, K.: A low supply voltage high PSRR voltage reference in CMOS process. IEEE J. Solid-State Circ. 30(5), 586–590 (1995)CrossRefGoogle Scholar
- 8.Mohieldin, A.N., Elbahr, H., Hegazi, E., Mostafa, M.: A low-voltage CMOS bandgap reference circuit with improved power supply rejection. In: International Conference on Microelectronics, pp. 343–346 (2010)Google Scholar
- 9.Kang, X.Z., Tang, Z.W.: A novel high PSRR bandgap over a wide frequency range. In: International Conference on Solid-State and Integrated Circuit Technology, pp. 418–420 (2010)Google Scholar
- 10.Yu, Q., Zhang, W.D., Chen, H., Ning, N.: High PSRR and high-order curvature-compensated bandgap voltage reference. In: Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics, pp. 154–157 (2010)Google Scholar
- 11.Tsividis, Y.: Accurate analyzes of temperature effects in Ie-Vbe characteristics with application to bandgap reference sources. IEEE J. Solid-State Circ. 15(12), 1076–1084 (1980)CrossRefGoogle Scholar
- 12.Gunawan, M., Meijer, G., Fonderie, J., Huijsing, H.: A curvature-corrected low-voltage bandgap reference. IEEE J. Solid-State Circ. 34(5), 670–674 (1999)CrossRefGoogle Scholar
- 13.Rincon-Mora, G.A., Allen, P.E.: 1.1-V current-mode and piece-wise-linear curvature-corrected bandgap reference. IEEE J. Solid-State Circ. 33(10), 1551–1554 (1998)CrossRefGoogle Scholar
- 14.Lee, I., Kim, G., Kim, W.: Exponential curvature-compensated BiCMOS bandgap references. IEEE J. Solid-State Circ. 29(11), 1396–1403 (1994)CrossRefGoogle Scholar
- 15.Razavi, B.: Design of Analog CMOS Integrated Circuits, p. 309. Xi’An Jiaotong University Press, Xi’An (2002). Chen Guican, tran. (in Chinese)Google Scholar
- 16.Tao, C., Fayed. A.: Spurious-noise-free buck regulator for direct powering of analog/RF loads using PWM control with random frequency hopping and random phase chopping. In: Proceedings of the IEEE Solid State Circuits Conference (ISSCC), pp. 396–398 (2011)Google Scholar
- 17.Holman, T.: A new temperature compensation technique for bandgap voltage references. In: IEEE International Symposium on Circuits and Systems, pp. 767–770 (1996)Google Scholar