Skip to main content

Coordination Polymerization

  • Chapter
  • First Online:

Abstract

Nearly half of all polymers produced worldwide are produced by catalytic polymerization reactions carried out in the presence of transition metal compounds. Coordination of a monomer to a metal center is a crucial step in the catalytic cycle. Therefore, these polymerizations are referred to as “coordination polymerizations”. Especially polypropylene and a large proportion of polyethylene are produced in this way. Therefore, this chapter deals with the fundamental principles of this industrially enormously important but also academically interesting and multifaceted field of chemistry.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    The reaction is not well defined and the products, because they are insoluble, are not easily analyzed. There are a number of different titanium species in various valence states. Because among the various species formed many catalyze the polymerization of ethene, this system is called a multi-site catalyst.

  2. 2.

    The following discourse describes the basic mechanisms of stereo control. For a detailed discussion of stereo control during catalytic polymerization the reader is referred to the literature (e.g., Brintzinger et al. 1995; Angermund et al. 2000).

  3. 3.

    The re/si nomenclature denotes the sides of a planar, sp2-hybridized center, from which, after a reaction in which a further substituent is added, a chiral center is formed.

  4. 4.

    For a more detailed discussion of point groups and the elements of molecular symmetry, the interested reader is referred to the literature (Willock 2009)

References

  • Angermund K, Fink G, Jensen V, Kleinschmidt R (2000) Towards quantitative prediction of stereospecificity of metallocene-based catalysts for alpha-olefins. Chem Rev 100:1457–1470

    Article  CAS  Google Scholar 

  • Böhm L (2003) The ethylene polymerization with Ziegler catalysts fifty years after the discovery. Angew Chem Int Ed 42:5010–5030

    Article  Google Scholar 

  • Brintzinger H-H, Fischer D, Mülhaupt R, Rieger B, Waymouth R (1995) Stereospezifische Olefinpolymerisation mit chiralen Metallocenkatalysatoren. Angew Chem 107:1255–1283

    Article  Google Scholar 

  • Calderon N (1972) Olefin metathesis reaction. Acc Chem Res 5:127–132

    Article  CAS  Google Scholar 

  • Grubbs RH (1994) The development of functional group tolerant ROMP catalysts. J Macromol Sci Chem A31:1829–1833

    Article  CAS  Google Scholar 

  • Hérisson JL, Chauvin Y (1971) Catalysis of olefin transformation by tungsten complexes, II. Telomerization of cyclic olefins in the presence of acyclic olefins. Makromol Chem 141:161–167

    Article  Google Scholar 

  • Kingsbury J, Harrity J, Bonnitatebus P, Hoveyda AH (1999) A recyclable Ru-based metathesis catalyst. J Am Chem Soc 121:791–799

    Article  CAS  Google Scholar 

  • Krause JO, Zarka MT, Anders U, Weberskirch R, Nuyken O, Buchmeiser MR (2003) Simple synthesis of poly(acetylene) latex particles in aqueous media. Angew Chem Int Ed 42:5965–5969

    Article  CAS  Google Scholar 

  • Krause J, Wurst K, Nuyken O, Buchmeiser MR (2004) Synthesis and reactivity of homogenous and heterogenous ruthenium-based metathesis catalysts containing electron withdrawing ligands. Chem Eur J 10:778–785

    Google Scholar 

  • Love JA, Morgan JP, Trnka TM, Grubbs RH (2002) A practical and highly active ruthenium-based catalyst that effects the cross metathesis of acrylonitrile. Angew Chem Int Ed 41:4035–4037

    Article  CAS  Google Scholar 

  • Mülhaupt R (2003) Catalytic polymerization and post polymerization catalysis fifty years after the discovery of Ziegler catalysts. Macromol Chem Phys 204:289–327

    Article  Google Scholar 

  • Natta G (1964) Von der stereospezifischen Polymerisation zur asymmetrischen autokatalytischen Synthese von Makromolekülen. Angew Chem 76:553–566

    Article  CAS  Google Scholar 

  • Scholl M, Ding S, Lee CW, Grubbs RH (1999) Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroxy-imidazol-2-ylidine ligands. Org Let 1:953–956

    Article  CAS  Google Scholar 

  • Schrock RR (1986) On the trail of metathesis catalysts. J Organomet Chem 300:249–262

    Article  CAS  Google Scholar 

  • Schwab P, France MB, Ziller JW, Grubbs RH (1995) A series of well-defined catalysts, synthesis and application of RuCl2(=CHR')(PR3)2. Angew Chem Int Ed 34:2039

    Article  CAS  Google Scholar 

  • Sinn H, Kaminsky W (1980) Ziegler-Natta-catalysis. Adv Organomet Chem 18:99–149

    Article  CAS  Google Scholar 

  • Willock D (2009) Molecular symmetry. Wiley, West Sussex

    Book  Google Scholar 

  • Ziegler K, Holzkamp E, Breil H, Martin H (1955) Das Mülheimer Normaldruck-Polyäthylen-Verfahren. Angew Chem 67:541–547

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koltzenburg, S., Maskos, M., Nuyken, O. (2017). Coordination Polymerization. In: Polymer Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49279-6_11

Download citation

Publish with us

Policies and ethics