Skip to main content

Part of the book series: Power Systems ((POWSYS))

  • 1694 Accesses

Abstract

Electrical drive systems are key components in modern appliances, industry equipment and systems, such as digital machine tools and hybrid and pure electric vehicles. To obtain the best performance of these drive systems, the motors and their control systems should be designed and optimized simultaneously at the system level rather than the component level. This chapter presents system-level design and optimization methods for electrical drive systems, namely the single-level optimization method, multi-level optimization method, and multi-level Genetic Algorithm (MLGA). Two electrical drive systems are investigated to illustrate the effectiveness of those proposed methods. The performances of two machines are evaluated by the finite element models, which have been verified by comparing with the experimental results on prototypes. The proposed multi-level method can increase the performance of the whole drive system, such as higher output power, lower material cost and lower dynamic overshoot, and decrease the computational cost significantly compared with those of single-level design optimization method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lei G, Wang TS, Guo YG, Zhu JG, Wang SH (2014) System level design optimization method for electrical drive system: deterministic approach. IEEE Trans Ind Electron 61(12):6591–6602

    Article  Google Scholar 

  2. Zhu ZQ, Howe D (2007) Electrical machines and drives for electric, hybrid, and fuel cell vehicles. Proc IEEE 95(4):746–765

    Article  Google Scholar 

  3. Chan CC (2007) The state of the art of electric, hybrid, and fuel cell vehicles. Proc IEEE 95(4):704–718

    Article  Google Scholar 

  4. Emadi A, Lee YJ, Rajashekara K (2008) Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles. IEEE Trans Ind Electron 55(6):2237–2245

    Article  Google Scholar 

  5. Lei G, Guo YG, Zhu JG et al (2012) System level six sigma robust optimization of a drive system with PM transverse flux machine. IEEE Trans Magn 48(2):923–926

    Article  Google Scholar 

  6. Meng XJ, Wang SH, Qiu J, Zhu JG, Wang Y, Guo YG et al (2010) Dynamic multi-level optimization of machine design and control parameters based on correlation analysis. IEEE Trans Magn 46(8):2779–2782

    Article  Google Scholar 

  7. Lei G, Liu CC, Guo YG, Zhu JG (2015) Multi-disciplinary design analysis and optimization of a PM transverse flux machine with soft magnetic composite core,” IEEE Trans Magn, 2015, vol 51(11). Article 8109704

    Google Scholar 

  8. Vese I, Marignetti F, Radulescu MM (2010) Multiphysics approach to numerical modeling of a permanent-magnet tubular linear motor. IEEE Trans Ind Electron 57(1):320–326

    Article  Google Scholar 

  9. Kreuawan S, Gillon F, Brochet P (2008) Optimal design of permanent magnet motor using multi-disciplinary design optimisation. In: Proceedings of the 18th International Conference on Electrical Machines, 6–9 Sept., Vilamoura, pp 1–6

    Google Scholar 

  10. Lei G, Shao KR, Guo YG, Zhu JG (2012) Multi-objective sequential optimization method for the design of industrial electromagnetic devices. IEEE Trans Magn 48(11):4538–4541

    Article  Google Scholar 

  11. Li WL, Zhang XC, Cheng SK, Cao JC (2013) Thermal optimization for a HSPMG used for distributed generation systems. IEEE Trans Ind Electron 60(2):474–482

    Article  Google Scholar 

  12. Pfister P-D, Perriard Y (2010) Very-high-speed slotless permanent-magnet motors: analytical modeling, optimization, design, and torque measurement methods. IEEE Trans Ind Electron 57(1):296–303

    Article  Google Scholar 

  13. Laskaris KI, Kladas AG (2011) Permanent-magnet shape optimization effects on synchronous motor performance. IEEE Trans Ind Electron 58(9):3776–3783

    Article  Google Scholar 

  14. Yamazaki K, Ishigami H (2010) Rotor-shape optimization of interior-permanent-magnet motors to reduce harmonic iron losses. IEEE Trans Ind Electron 57(1):61–69

    Article  Google Scholar 

  15. Ma C, Qiu L (2015) Multi-objective optimization of switched reluctance motors based on design of experiments and particle swarm optimization. IEEE Trans Energy Convers 30(3):1144–1153

    Google Scholar 

  16. Barcaro M, Bianchi N, Magnussen F (2012) Permanent-magnet optimization in permanent-magnet-assisted synchronous reluctance motor for a wide constant-power speed range. IEEE Trans Ind Electron 59(6):2495–2502

    Article  Google Scholar 

  17. Lee D-H, Pham TH, Ahn J-W (2013) Design and operation characteristics of four-two pole high-speed SRM for torque ripple reduction. IEEE Trans Ind Electron 60(9):3637–3643

    Article  Google Scholar 

  18. Flieller D, Nguyen NK, Wira P, Sturtzer G, Abdeslam DO, Merckle J (2014) A self-learning solution for torque ripple reduction for nonsinusoidal permanent-magnet motor drives based on artificial neural networks. IEEE Trans Ind Electron 61(2):655–666

    Article  Google Scholar 

  19. Lei G, Xu W, Hu JF, Zhu JG, Guo YG, Shao KR (2014) Multi-level design optimization of a FSPMM drive system by using sequential subspace optimization method. IEEE Trans Magn 50(2). Article 7016904

    Google Scholar 

  20. Yao D, Ionel DM (2013) A review of recent developments in electrical machine design optimization methods with a permanent-magnet synchronous motor benchmark study. IEEE Trans Ind Appl 49(3):1268–1275

    Article  Google Scholar 

  21. Hasanien HM, Abd-Rabou AS, Sakr SM (2010) Design optimization of transverse flux linear motor for weight reduction and performance improvement using response surface methodology and genetic algorithms. IEEE Trans Energy Convers 25(3):598–605

    Article  Google Scholar 

  22. Buja GS, Kazmierkowski MP (2004) Direct torque control of PWM inverter-fed AC motors—a survey. IEEE Trans Ind Electron 51(4):744–757

    Article  Google Scholar 

  23. Kouro S, Cortes P, Vargas R, Ammann U, Rodriguez J (2009) Model predictive control—a simple and powerful method to control power converters. IEEE Trans Ind Electron 56(6):1826–1838

    Article  Google Scholar 

  24. Bolognani S, Bolognani S, Peretti L, Zigliotto M (2009) Design and implementation of model predictive control for electrical motor drives. IEEE Trans Ind Electron 56(6):1925–1936

    Article  Google Scholar 

  25. Xia CL, Wang YF, Shi TN (2013) Implementation of finite-state model predictive control for commutation torque ripple minimization of permanent-magnet brushless DC motor. IEEE Trans Ind Electron 60(3):896–905

    Article  Google Scholar 

  26. Morel F, Lin-Shi XF, Retif J-M, Allard B, Buttay C (2009) A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive. IEEE Trans Ind Electron 56(7):2715–2728

    Article  Google Scholar 

  27. Liu C-H, Hsu Y-Y (2010) Design of a self-tuning PI controller for a STATCOM using particle swarm optimization. IEEE Trans Ind Electron 57(2):702–715

    Article  Google Scholar 

  28. Zhu JG, Guo YG, Lin ZW, Li YJ, Huang YK (2011) Development of PM transverse flux motors with soft magnetic composite cores. IEEE Trans Magn 47(10):4376–4383

    Article  Google Scholar 

  29. Guo YG, Zhu JG, Watterson PA, Wei Wu (2006) Development of a PM transverse flux motor with soft magnetic composite core. IEEE Trans Energy Convers 21(2):426–434

    Article  Google Scholar 

  30. Wang TS, Zhu JG, Zhang YC (2011) Model predictive torque control for PMSM with duty ratio optimization. In: Proceedings of the 2011 International Conference on Electrical Machines and Systems (ICEMS), 20–23 Aug 2011, pp 1–5

    Google Scholar 

  31. Wang SH, Meng XJ, Guo NN, Li HB, Qiu J, Zhu JG et al (2009) Multi-level optimization for surface mounted PM machine incorporating with FEM. IEEE Trans Magn 45(10):4700–4703

    Article  Google Scholar 

  32. Meng XJ, Wang SH, Qiu J, Zhang QH, Zhu JG, Guo YG, Liu DK (2011) Robust multi-level optimization of PMSM using design for six sigma. IEEE Trans Magn 47(10):3248–3251

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Lei .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lei, G., Zhu, J., Guo, Y. (2016). Design Optimization Methods for Electrical Drive Systems. In: Multidisciplinary Design Optimization Methods for Electrical Machines and Drive Systems. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49271-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49271-0_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49269-7

  • Online ISBN: 978-3-662-49271-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics