Skip to main content

Part of the book series: Power Systems ((POWSYS))

Abstract

This chapter presents the design optimization methods for electrical machines in terms of different optimization situations, including low- and high-dimensional, single- and multi- objectives and disciplines. Firstly, the traditional design optimization methods are briefly reviewed, and the challenges presented. Then, five new types of design optimization methods are presented to improve the optimization efficiency of electrical machines, particularly those complex structured permanent magnet machines, in terms of different optimization situations. They are (a) a sequential optimization method for design optimization of low-dimensional problems of electromagnetic devices including electrical machines, (b) a multi-objective sequential optimization method for engineering multi-objective problems, (c) a multi-level design optimization method (or sequential subspace optimization method) for high dimensional problems, (d) a multi-level genetic algorithm for high dimensional optimization problems as well, and (e) the multi-disciplinary design optimization method. Design examples with detailed experimental and optimization results are illustrated for each optimization method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lei G, Wang TS, Guo YG, Zhu JG, Wang SH (2014) System level design optimization method for electrical drive system: deterministic approach. IEEE Trans Ind Electron 61(12):6591–6602

    Article  Google Scholar 

  2. Vese I, Marignetti F, Radulescu MM (2010) Multiphysics approach to numerical modeling of a permanent-magnet tubular linear motor. IEEE Trans Ind Electron 57(1):320–326

    Article  Google Scholar 

  3. Kreuawan S, Gillon F, Brochet P (2008) Optimal design of permanent magnet motor using multi-disciplinary design optimisation, In: proceedings of 18th international conference on electrical machines, Vilamoura. pp 1–6, 6–9 Sep 2008

    Google Scholar 

  4. Yao D, Ionel DM (2013) A review of recent developments in electrical machine design optimization methods with a permanent-magnet synchronous motor benchmark study. IEEE Trans Ind Appl 49(3):1268–1275

    Article  Google Scholar 

  5. Di Barba P (2010) Multi-objective shape design in electricity and magnetism, Lecture Notes Elect Eng, vol 47

    Google Scholar 

  6. Reyes-Sierra M, Coello CAC (2006) Multi-objective particle swarm optimizers: A survey of the state-of-the-art. Int J Computat Intell Res 2(3):287–308

    Google Scholar 

  7. Yamazaki K, Ishigami H (2010) Rotor-shape optimization of interior-permanent-magnet motors to reduce harmonic iron losses. IEEE Trans Ind Electron 57(1):61–69

    Article  Google Scholar 

  8. Barcaro M, Bianchi N, Magnussen F (2012) Permanent-magnet optimization in permanent-magnet-assisted synchronous reluctance motor for a wide constant-power speed range. IEEE Trans Ind Electron 59(6):2495–2502

    Article  Google Scholar 

  9. Komeza K, Dems M (2012) Finite-element and analytical calculations of no-load core losses in energy-saving induction motors. IEEE Trans Ind Electron 59(7):2934–2946

    Article  Google Scholar 

  10. Zhao W L, Lipo T A, Kwon B-I (2015) Optimal design of a novel asymmetrical rotor structure to obtain torque and efficiency improvement in surface inset PM motors, IEEE Trans Magn, 51(3), Article no 8100704

    Google Scholar 

  11. Kim H-W, Kim K-T, Jo Y-S, Hur J (2013) Optimization methods of torque density for developing the neodymium free SPOKE-type BLDC motor. IEEE Trans Magn 49(5):2173–2176

    Article  Google Scholar 

  12. Lei G, Shao KR, Guo Y, Zhu J, Lavers JD (2008) Sequential optimization method for the design of electromagnetic device. IEEE Trans Magn 44(11):3217–3220

    Article  Google Scholar 

  13. Lei G, Zhu JG, Guo YG, Zou Y (2014) State of art of sequential optimization strategies for the design of electromagnetic devices. In Proceedings of the 17th international conference on electrical machines and systems (ICEMS), pp 706–709, Oct. 22–25, 2014

    Google Scholar 

  14. Storn R, Price K (1997) Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  15. Takahashi RHC, Vasconcelos JA, Ramírez JA, Krahenbuhl L (2003) A multi-objective methodology for evaluating genetic operators. IEEE Trans Magn 39(3):1321–1324

    Article  Google Scholar 

  16. Campelo F, Guimaraes FG, Igarashi H, Ramirez JA (2005) A clonal selection algorithm for optimization in electromagnetics. IEEE Trans Magn 41(5):1736–1739

    Article  Google Scholar 

  17. Alotto P, Baumgartner U, Freschi F, Köstinger A, Magele Ch, Renhart W, Repetto M (2008) SMES optimization benchmark extended: introducing Pareto optimal solutions into TEAM22. IEEE Trans Magn 44(6):1066–1069

    Article  Google Scholar 

  18. Wang LD, Lowther DA (2006) Selection of approximation models for electromagnetic device optimization. IEEE Trans Magn 42(2):1227–1230

    Article  Google Scholar 

  19. Lei G, Shao KR, Guo Y, Zhu J, Lavers JD (2009) Improved SOM for high dimensional electromagnetic optimization problems. IEEE Trans Magn 45(10):3993–3996

    Article  Google Scholar 

  20. Lei G, Yang GY, Shao KR, Guo YG, Zhu JG, Lavers JD (2010) Electromagnetic device design based on RBF models and two new sequential optimization strategies. IEEE Trans Magn 46(8):3181–3184

    Article  Google Scholar 

  21. Guo YG, Zhu JG, Dorrell D (2009) Design and analysis of a claw pole PM motor with molded SMC core. IEEE Trans Magn 45(10):582–4585

    Google Scholar 

  22. Lei G, Liu CC, Zhu JG, Guo YG (2015) Techniques for multi-level design optimization of permanent magnet motors. IEEE Trans Energy Conver 30(4):1574–1584

    Article  Google Scholar 

  23. Lei G, Shao KR, Guo YG, Zhu JG (2012) Multi-objective sequential optimization method for the design of industrial electromagnetic devices. IEEE Trans Magn 48(11):4538–4541

    Article  Google Scholar 

  24. Lebensztajn L, Coulomb JL (2004) TEAM workshop problem 25: A multi-objective analysis. IEEE Trans Magn 40(2):1402–1405

    Article  Google Scholar 

  25. Xie DX, Sun XW, Bai BD, Yang SY (2008) Multi-objective optimization based on response surface model and its application to engineering shape design. IEEE Trans Magn 44(6):1006–1009

    Article  Google Scholar 

  26. Di Barba P (2009) Evolutionary multi-objective optimization methods for the shape design of industrial electromagnetic devices. IEEE Trans Magn 45(3):1436–1441

    Article  MathSciNet  Google Scholar 

  27. Wu CFJ, Hamada MS (2000) Experiments: Planning, Analysis Parameter Design Optimization. Wiley, New York

    Google Scholar 

  28. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  29. Zhu JG, Guo YG, Lin ZW, Li YJ, Huang YK (2011) Development of PM transverse flux motors with soft magnetic composite cores. IEEE Trans Magn 47(10):4376–4383

    Article  Google Scholar 

  30. Guo YG, Zhu JG, Watterson PA, Wei Wu (2006) Development of a PM transverse flux motor with soft magnetic composite core. IEEE Trans Energy Conver 21(2):426–434

    Article  Google Scholar 

  31. Lei G, Guo YG, Zhu JG et al (2012) System level six sigma robust optimization of a drive system with PM transverse flux machine. IEEE Trans Magn 48(2):923–926

    Article  Google Scholar 

  32. Lei G, Zhu JG, Guo YG, Hu JF, Xu W, Shao KR (2013) Robust design optimization of PM-SMC motors for Six Sigma quality manufacturing. IEEE Trans Magn 49(7):3953–3956

    Article  Google Scholar 

  33. Lei G, Guo YG, Zhu JG, Chen XM, Xu W (2012) Sequential subspace optimization method for electromagnetic devices design with orthogonal design technique. IEEE Trans Magn 48(2):479–482

    Article  Google Scholar 

  34. Lei G, Xu W, Hu JF, Zhu JG, Guo YG, Shao KR (2014) Multi-level design optimization of a FSPMM drive system by using sequential subspace optimization method, IEEE Trans Magn, 50(2), Article no 7016904

    Google Scholar 

  35. Liu CC, Zhu JG, Wang YH, Lei G, Guo YG, Liu XJ (2014) A low-cost permanent magnet synchronous motor with SMC and ferrite PM, In: Proceedings of 17th international conference on electrical Machines and Systems (ICEMS), pp 397–400

    Google Scholar 

  36. Fei W, Luk PCK, Shen JX, Wang Y, Jin M (2012) A novel permanent-magnet flux switching machine with an outer-rotor configuration for in-wheel light traction applications. IEEE Trans Ind Appl 48(5):1496–1506

    Article  Google Scholar 

  37. Hua W, Cheng M, Zhu ZQ, Howe D (2006) Design of flux-switching permanent magnet machine considering the limitation of inverter and flux-weakening capability. In: proceedings of 41st IAS annual meeting-industry applications conference, vol 5, pp 2403–2410

    Google Scholar 

  38. Morio J (2011) Global and local sensitivity analysis methods for a physical system. Eur J Phys 32(6):1577–1583

    Article  Google Scholar 

  39. Rodriguez-Fernandez M, Banga JR, Doyle FJ (2012) Novel global sensitivity analysis methodology accounting for the crucial role of the distribution of input parameters: application to systems biology models. Int J Robust Nonlin Control 22:1082–1102

    Article  MathSciNet  MATH  Google Scholar 

  40. Morris MD (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33(2):161–174

    Article  Google Scholar 

  41. Sobol IM (2011) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55:271–280

    Article  MathSciNet  Google Scholar 

  42. Herman JD, Kollat JB, Reed PM, Wagener T (2013) Technical note: method of morris effectively reduces the computational demands of global sensitivity analysis for distributed watershed models. Hydrol Earth Syst Sci 17:2893–2903

    Article  Google Scholar 

  43. Li QS, Liu DK, Leung AYT, Zhang N, Luo QZ (2002) A multi-level genetic algorithm for the optimum design of structural control systems. Int J Numer Meth. Engng 55:817–834

    Article  MATH  Google Scholar 

  44. Wang SH, Meng XJ, Guo NN, Li HB, Qiu J, Zhu JG et al (2009) Multi-level optimization for surface mounted PM machine incorporating with FEM. IEEE Trans Magn 45(10):4700–4703

    Article  Google Scholar 

  45. Meng XJ, Wang SH, Qiu J, Zhu JG, Wang Y, Guo YG et al (2010) Dynamic multi-level optimization of machine design and control parameters based on correlation analysis. IEEE Trans Magn 46(8):2779–2782

    Article  Google Scholar 

  46. Meng XJ, Wang SH, Qiu J, Zhang QH, Zhu JG, Guo YG, Liu DK (2011) Robust multi-level optimization of PMSM using design for six sigma. IEEE Trans Magn 47(10):3248–3251

    Article  Google Scholar 

  47. Lei G,Liu CC, Guo YG, Zhu JG (2015) Multi-disciplinary design analysis for PM motors with soft magnetic composite cores, IEEE Trans Magn, 51(11), Article no 8109704

    Google Scholar 

  48. Huang YK, Zhu JG et al (2009) Thermal analysis of high-speed SMC motor based on thermal network and 3D FEA with rotational core loss included. IEEE Trans Magn 45(106):4680–4683

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Lei .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lei, G., Zhu, J., Guo, Y. (2016). Design Optimization Methods for Electrical Machines. In: Multidisciplinary Design Optimization Methods for Electrical Machines and Drive Systems. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49271-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49271-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49269-7

  • Online ISBN: 978-3-662-49271-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics