Skip to main content

Optimization Methods

  • Chapter
  • First Online:

Part of the book series: Power Systems ((POWSYS))

Abstract

Optimization is an art of searching the best one/ones among a great number of feasible solutions. The main optimization target of electromagnetic devices and systems including electrical machines and drive systems is to determine a set of parameters involving material, topology and structural parameters to satisfy certain design specifications and constraints, such as output power, efficiency, volume, and cost. Engineers have been using optimization methods to optimize the designs of electromagnetic devices, components and systems for decades. This chapter aims to presents the optimization methods commonly used in the field of electrical machines and drive systems, as well as computational electromagnetics. Classic and modern intelligent optimization algorithms will be discussed firstly, followed by the multi-objective optimization algorithms. Four kinds of approximate models will be described, and the modelling methods will be discussed with two numerical examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lei G, Wang TS, Guo YG, Zhu JG, Wang SH (2014) System level design optimization method for electrical drive system: deterministic approach. IEEE Trans Ind Electron 61(12):6591–6602

    Article  Google Scholar 

  2. Yao D, Ionel DM (2013) A review of recent developments in electrical machine design optimization methods with a permanent-magnet synchronous motor benchmark study. IEEE Trans Ind Appl 49(3):1268–1275

    Article  Google Scholar 

  3. Chechurin VL, Korovkin NV, Hayakawa M (2007) Inverse problems in electric circuits and electromagnetics. Springer, New York

    MATH  Google Scholar 

  4. Coelho L, Alotto P (2007) Electromagnetic device optimization by hybrid evolution strategy approaches. Int J Comput Math Electr Electron Eng (COMPEL) 26(2):269–279

    Article  MATH  Google Scholar 

  5. Nguyen TD, Lanfranchi V, Doc C, Vilain JP (2009) Comparison of optimization algorithms for the design of a brushless DC electric machine with travel time minimization. In: Proceedings of the 8th international symposium on advanced electromechanical motion systems & electric drives (ELECTROMOTION), pp 1–6

    Google Scholar 

  6. Di Barba P (2010) Multiobjective shape design in electricity and magnetism. Lect Notes Elect Eng 47

    Google Scholar 

  7. Lei G, Shao KR, Guo YG, Zhu JG (2012) Multiobjective sequential optimization method for the design of industrial electromagnetic devices. IEEE Trans Magn 48(11):4538–4541

    Article  Google Scholar 

  8. Reyes-Sierra M, Coello CAC (2006) Multi-objective particle swarm optimizers: A survey of the state-of-the-art. Int J Comput Intell Res 2(3):287–308

    MathSciNet  Google Scholar 

  9. Dubas F, Sari A, Hissel D, Espanet C (2008) A comparison between CG and PSO algorithms for the design of a PM motor for fuel cell ancillaries. In: Proceedings of the IEEE Vehicle Power and Propulsion Conference, pp 1–7

    Google Scholar 

  10. Razik H, Defranoux C, Rezzoug A (2000) Identification of induction motor using a genetic algorithm and a quasi-Newton algorithm. In: Proceedings of the IEEE International Power Electronics Congress, pp 65–70

    Google Scholar 

  11. Qteish A, Hamdan M (2010) Hybrid particle swarm and conjugate gradient optimization algorithm. Proc Adv Swarm Intell 6145:582–588

    Article  Google Scholar 

  12. Popa D-C, Micu DD, Miron O-R, Szabo L (2013) Optimized design of a novel modular tubular transverse flux reluctance machine. IEEE Trans Magn 49(11):5533–5542

    Article  Google Scholar 

  13. Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85

    Article  Google Scholar 

  14. Hasanien HM, Abd-Rabou AS, Sakr SM (2010) Design optimization of transverse flux linear motor for weight reduction and performance improvement using response surface methodology and genetic algorithms. IEEE Trans Energy Convers 25(3):598–605

    Article  Google Scholar 

  15. Hasanien HM (2011) Particle swarm design optimization of transverse flux linear motor for weight reduction and improvement of thrust force. IEEE Trans Ind Electron 58(9):4048–4056

    Article  Google Scholar 

  16. Chun JS, Kim MK, Jung HK (1997) Shape optimization of electromagnetic devices using immune algorithm. IEEE Trans Magn 33(2):1876–1879

    Article  Google Scholar 

  17. Campelo F, Guimaraes FG, Igarashi H et al (2005) A clonal selection algorithm for optimization in electromagnetics. IEEE Trans Magn 41(5):1736–1739

    Article  Google Scholar 

  18. Ho SL, Yang SY, Ni G et al (2005) A particle swarm optimization-based method for multiobjective design optimizations. IEEE Trans Magn 41(5):1756–1759

    Article  Google Scholar 

  19. http://www.obitko.com/tutorials/genetic-algorithms/ga-basic-description.php

  20. Srinivas M (1994) Genetic algorithms: a survey. Computer 6:17–26

    Article  Google Scholar 

  21. Storn R, Price K (1997) Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  22. Lei G, Shao KR, Guo Y, Zhu J, Lavers JD (2008) Sequential optimization method for the design of electromagnetic device. IEEE Trans Magn 44(11):3217–3220

    Article  Google Scholar 

  23. Lei G, Shao KR, Guo Y, Zhu J, Lavers JD (2009) Improved SOM for high dimensional electromagnetic optimization problems. IEEE Trans Magn 45(10):3993–3996

    Article  Google Scholar 

  24. Larranaga P, Lozano JA (2002) Esitimation of distribution algorithm: a new tool for evolutionary computation. Kluwer Acadmic Publisher, Boston

    Book  Google Scholar 

  25. Pelikan M (2005) Hierarchical Bayesian optimization algorithm: toward a new generation of evolutionary algorithms. Springer, New York

    Google Scholar 

  26. Hauschild M, Pelikan M (2011) An introduction and survey of estimation of distribution algorithms. Swarm and Evol Comput 1(3):111–128

    Article  Google Scholar 

  27. Campelo F, Guimaraes FG, Ramirez JA, Igarashi H (2009) Hybrid estimation of distribution algorithm using local function approximations. IEEE Trans Magn 45:1558–1561

    Article  Google Scholar 

  28. Ho SL, Yang SY, Ni GZ, Wong HC (2006) A particle swarm optimization method with enhanced global search ability for design optimizations of electromagnetic devices. IEEE Trans Magn 42(4):1107–1110

    Article  Google Scholar 

  29. Al-Aawar N, Hijazi TM, Arkadan AA (2011) Particle swarm optimization of coupled electromechanical systems. IEEE Trans Magn 47(5):1314–1317

    Article  Google Scholar 

  30. Elhossini A, Areibi S, Dony R (2010) Strength Pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization. Evol Comput 18(1):127–156

    Article  Google Scholar 

  31. Beniakar ME, Sarigiannidis AG, Kakosimos PE, Kladas AG (2014) Multiobjective evolutionary optimization of a surface mounted PM actuator with fractional slot winding for aerospace applications. IEEE Trans Magn 50(2), Article 7016404

    Google Scholar 

  32. dos Santos Coelho L, Barbosa LZ, Lebensztajn L (2010) Multiobjective particle swarm approach for the design of a brushless DC wheel motor. IEEE Trans Magn 46(8):2994–2997

    Google Scholar 

  33. Alotto P, Baumgartner U, Freschi F, Köstinger A, Magele Ch, Renhart W, Repetto M (2008) SMES optimization benchmark extended: introducing Pareto optimal solutions into TEAM22. IEEE Trans Magn 44(6):1066–1069

    Article  Google Scholar 

  34. Guimaraes FG, Campelo F, Saldanha RR, Igarashi H, Takahashi RHC, Ramirez JA (2006) A multiobjective proposal for the TEAM benchmark problem 22. IEEE Trans Magn 42(4):1471–1474

    Article  Google Scholar 

  35. Lebensztajn L, Coulomb JL (2004) TEAM workshop problem 25: a multiobjective analysis. IEEE Trans Magn 40(2):1402–1405

    Article  Google Scholar 

  36. Dias AHF, Vasconcelos JA (2002) Multiobjective genetic algorithms applied to solve optimization problems. IEEE Trans Magn 38(2):1133–1136

    Article  Google Scholar 

  37. dos Santos Coelho L, Alotto P (2008) Multiobjective electromagnetic optimization based on a nondominated sorting genetic approach with a chaotic crossover operator. IEEE Trans Magn 44(6):1078–1081

    Article  Google Scholar 

  38. Caravaggi Tenaglia G, Lebensztajn L (2014) A multiobjective approach of differential evolution optimization applied to electromagnetic problems. IEEE Trans Magn 50(2), Article 7015404

    Google Scholar 

  39. Ho SL, Yang JQ, Yang SY, Bai YN (2015) Integration of directed searches in particle swarm optimization for multiobjective optimization. IEEE Trans Magn 51(3) Article: 7000804

    Google Scholar 

  40. Al-Aawar N, Hijazi TM, Arkadan AA (2011) Particle swarm optimization of coupled electromechanical systems. IEEE Trans Magn 47(5):1314–1317

    Article  Google Scholar 

  41. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  42. Srinivas N, Deb K (1994) Multiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2(3):221–248

    Article  Google Scholar 

  43. Sooksaksun N (2012) Pareto-based multi-objective optimization for two-block class-based storage warehouse design. Ind Eng Manage Syst 11(4):331–338

    Google Scholar 

  44. Wang LD, Lowther DA (2006) Selection of approximation models for electromagnetic device optimization. IEEE Trans Magn 42(2):1227–1230

    Article  Google Scholar 

  45. Mendes MHS, Soares GH, Coulomb J-L, Vasconcelos JA (2013) Appraisal of surrogate modeling techniques: a case study of electromagnetic device. IEEE Trans Magn 49(5):1993–1996

    Google Scholar 

  46. Dyck D, Lowther DA, Malik Z et al (1998) Response surface models of electromagnetic devices and their application to design. IEEE Trans Magn 35(3):1821–1824

    Article  Google Scholar 

  47. Liu WK, Li S, Belytschko T (1997) Moving least-square reproducing kernel methods (I) Methodology and convergence. Comput Methods Appl Mech Eng 143:113–154

    Article  MathSciNet  MATH  Google Scholar 

  48. Ishikawa T, Tsukui Y, Matsunami M (1999) A combined method for the global optimization using radial basis function and deterministic approach. IEEE Trans Magn 35(3):1730–1733

    Article  Google Scholar 

  49. Gutmann HM (2001) A radial basis function method for global optimization. J Global Opt 19(3):201–227

    Article  MathSciNet  MATH  Google Scholar 

  50. Lei G, Yang GY, Shao KR, Guo YG, Zhu JG, Lavers JD (2010) Electromagnetic device design based on RBF models and two new sequential optimization strategies. IEEE Trans Magn 46(8):3181–3184

    Article  Google Scholar 

  51. Wu ZM (1995) Compactly supported positive definite radial basis functions. Adv Comput Math 4:283–292

    Article  MathSciNet  MATH  Google Scholar 

  52. Song KZ, Zhang X, Lu MW (2004) Meshless method based on collocation with consistent compactly supported radial basis functions. Acta Mech Sin 20(5):551–557

    Article  Google Scholar 

  53. Lebensztajn L, Marretto CAR, Costa MC et al (2004) Kriging: a useful tool for electromagnetic device optimization. IEEE Trans Magn 40(2):1196–1199

    Article  Google Scholar 

  54. Xia B, Pham M-T, Zhang YL, Koh C-S (2013) A global optimization algorithm for electromagnetic devices by combining adaptive Taylor Kriging and particle swarm optimization. IEEE Trans Magn 49(5):2061–2064

    Article  Google Scholar 

  55. Lim D-K, Woo D-K, Kim I-W, Ro J-S, Jung H-K (2013) Cogging torque minimization of a dual-type axial-flux permanent magnet motor using a novel optimization algorithm. IEEE Trans Magn 49(9):5106–5111

    Article  Google Scholar 

  56. Kim JB, Hwang KY, Kwon BI (2013) Optimization of two-phase in-wheel IPMSM for wide speed range by using the Kriging model based on Latin hypercube sampling. IEEE Trans Magn 47(5):1078–1081

    Article  Google Scholar 

  57. Lei G, Guo YG, Zhu JG, Wang TS, Chen XM, Shao KR (2012) System level six sigma robust optimization of a drive system with PM transverse flux machine. IEEE Trans Magn 48(2):923–926

    Article  Google Scholar 

  58. Lei G, Guo YG, Zhu JG, Chen XM, Xu W (2012) Sequential subspace optimization method for electromagnetic devices design with orthogonal design technique. IEEE Trans Magn 48(2):479–482

    Article  Google Scholar 

  59. Lophaven SN, Nielsen HB, Sondergaard J (2002) DACE: A MATLAB Kriging toolbox version 2.0. Technical Report IMM-TR-2002–12. Technical University of Denmark, Copenhagen

    Google Scholar 

  60. Dorica M, Giannacopoulos DD (2006) Response clustering for electromagnetic modeling and optimization. IEEE Trans Magn 42(4):1127–1130

    Article  Google Scholar 

  61. Marinova I, Panchev C, Katsakos D (2000) A neural network inversion approach to electromagnetic device design. IEEE Trans Magn 36(4):1080–1084

    Article  Google Scholar 

  62. Burrascano P, Fiori S, Mongiardo M (1999) Review of artificial neural networks applications in microwave computer-aided design. Int J RF Microw CAE 9(3):158–174

    Article  Google Scholar 

  63. Lei G (2009) Statistical analysis method for electromagnetic inverse problems . Ph D thesis. Huazhong University of Science and Technology, Wuhan, China (in Chinese)

    Google Scholar 

  64. Wu CFJ, Hamada MS (2000) Experiments: planning, analysis and parameter design optimization. Wiley, New York

    Google Scholar 

  65. Rashid K, Farina M, Ramirez JA et al (2001) A comparison of two generalized response surface methods for optimization in electromagnetics. Int J Comput Math Electr Electron Eng (COMPEL) 20(3):740–752

    Article  MATH  Google Scholar 

  66. Coulomb JL, Kobetski A, Caldora M, Costa et al (2003) Comparison of radial basis function approximation techniques. Int J Comput Math Electr Electron Eng (COMPEL) 22(3):616–629

    Article  MATH  Google Scholar 

  67. Pahner U, Hameyer K (2000) Adaptive coupling of differential evolution and multiquadrics approximation for the tuning of the optimization process. IEEE Trans Magn 36(4):1047–1050

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Lei .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lei, G., Zhu, J., Guo, Y. (2016). Optimization Methods. In: Multidisciplinary Design Optimization Methods for Electrical Machines and Drive Systems. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49271-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49271-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49269-7

  • Online ISBN: 978-3-662-49271-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics