Skip to main content

Part of the book series: Power Systems ((POWSYS))

  • 1914 Accesses

Abstract

This chapter presents a brief summary of the design fundamentals including the analysis models and methods for electrical machines and drive systems, based on our design experiences, particularly for permanent magnet electrical machine with soft magnetic composite cores. Because of the multi-disciplinary nature, these design models and methods will be investigated at the disciplinary level, including electromagnetic, thermal, mechanical, power electronics, and control algorithm designs. Several design examples will be presented to illustrate the corresponding design models and methods based on our research findings, such as the finite element model for design analysis of motors, and the model predictive control algorithm and its improvement form for the drive systems. These models and algorithms will be employed in the design optimization of electrical machines and drive systems in the following chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lei G, Wang TS, Guo YG, Zhu JG, Wang SH (2014) System level design optimization methods for electrical drive systems: deterministic approach. IEEE Trans Ind Electron 61(12):6591–6602

    Article  Google Scholar 

  2. Lei G, Wang TS, Zhu JG, Guo YG, Wang SH (2015) System level design optimization method for electrical drive system: robust approach. IEEE Trans Ind Electron 62(8):4702–4713

    Article  Google Scholar 

  3. Zhu JG, Guo YG, Lin ZW, Li YJ, Huang YK (2011) Development of PM transverse flux motors with soft magnetic composite cores. IEEE Trans Magn 47(10):4376–4383

    Article  Google Scholar 

  4. Zhu JG, Ramsden VS (1998) Improved formulations for rotational core losses in rotating electrical machines. IEEE Trans Magn 34(4):2234–2242

    Article  Google Scholar 

  5. Guo YG, Zhu JG, Lu HY, Lin ZW, Li YJ (2012) Core loss calculation for soft magnetic composite electrical machines. IEEE Trans Magn 48(11):3112–3115

    Article  Google Scholar 

  6. Guo YG, Zhu JG, Lu HY, Li YJ, Jin JX (2014) Core loss computation in a permanent magnet transverse flux motor with rotating fluxes. IEEE Trans Magn 50(11). Article#: 6301004

    Google Scholar 

  7. Guo YG, Zhu JG, Zhong JJ, Wu W (2003) Core losses in claw pole permanent magnet machines with soft magnetic composite stators. IEEE Trans Magn 39(5):3199–3201

    Article  Google Scholar 

  8. Huang YK, Zhu JG, Guo YG, Lin ZW, Hu Q (2007) Design and analysis of a high speed claw pole motor with soft magnetic composite core. IEEE Trans Magn 43(6):2492–2494

    Article  Google Scholar 

  9. Huang YK, Zhu JG et al (2009) Thermal analysis of high-speed SMC motor based on thermal network and 3-D FEA with rotational core loss included. IEEE Trans Magn 45(10):4680–4683

    Article  MathSciNet  Google Scholar 

  10. Pfister P-D, Perriard Y (2010) Very-high-speed slotless permanent-magnet motors: analytical modeling, optimization, design, and torque measurement methods. IEEE Trans Ind Electron 57(1):296–303

    Article  Google Scholar 

  11. Komeza K, Dems M (2012) Finite-element and analytical calculations of no-load core losses in energy-saving induction motors. IEEE Trans Ind Electron 59(7):2934–2946

    Article  Google Scholar 

  12. Wang SH, Meng XJ, Guo NN, Li HB, Qiu J, Zhu JG et al (2009) Multilevel optimization for surface mounted PM machine incorporating with FEM. IEEE Trans Magn 45(10):4700–4703

    Article  Google Scholar 

  13. Barcaro M, Bianchi N, Magnussen F (2012) Permanent-magnet optimization in permanent-magnet-assisted synchronous reluctance motor for a wide constant-power speed range. IEEE Trans Ind Electron 59(6):2495–2502

    Article  Google Scholar 

  14. Vese I, Marignetti F, Radulescu MM (2010) Multiphysics approach to numerical modeling of a permanent-magnet tubular linear motor. IEEE Trans Ind Electron 57(1):320–326

    Article  Google Scholar 

  15. Bornschlegell AS, Pelle J, Harmand S, Fasquelle A, Corriou J-P (2013) Thermal optimization of a high-power salient-pole electrical machine. IEEE Trans Ind Electron 60(5):1734–1746

    Article  Google Scholar 

  16. Lee D-H, Pham TH, Ahn J-W (2013) Design and operation characteristics of four-two pole high-speed SRM for torque ripple reduction. IEEE Trans Ind Electron 60(9):3637–3643

    Article  Google Scholar 

  17. Flieller D, Nguyen NK, Wira P, Sturtzer G, Abdeslam DO, Merckle J (2014) A self-learning solution for torque ripple reduction for nonsinusoidal permanent-magnet motor drives based on artificial neural networks. IEEE Trans Ind Electron 61(2):655–666

    Article  Google Scholar 

  18. Hasanien HM, Abd-Rabou AS, Sakr SM (2010) Design optimization of transverse flux linear motor for weight reduction and performance improvement using response surface methodology and genetic algorithms. IEEE Trans Energy Convers 25(3):598–605

    Article  Google Scholar 

  19. Hasanien HM (2011) Particle swarm design optimization of transverse flux linear motor for weight reduction and improvement of thrust force. IEEE Trans Ind Electron 58(9):4048–4056

    Article  Google Scholar 

  20. Lei G, Liu CC, Guo YG, Zhu JG (2015) Multidisciplinary design analysis for PM motors with soft magnetic composite cores. IEEE Trans Magn 51(11). Article 8109704

    Google Scholar 

  21. Hua W, Cheng M, Zhu ZQ, Howe D (2006) Design of flux-switching permanent magnet machine considering the limitation of inverter and flux-weakening capability. In: Proceedings of 41st IAS annual meeting-industry applications conference, vol 5, pp 2403–2410

    Google Scholar 

  22. Liu CC, Zhu JG, Wang YH, Lei G, Guo YG, Liu XY (2014) A low-cost permanent magnet synchronous motor with SMC and ferrite PM. In: Proceedings of 17th international conference on electrical machines and systems (ICEMS), pp 397–400

    Google Scholar 

  23. Fei W, Luk PCK, Shen JX, Wang Y, Jin M (2012) A novel permanent-magnet flux switching machine with an outer-rotor configuration for in-wheel light traction applications. IEEE Trans Ind Appl 48(5):1496–1506

    Article  Google Scholar 

  24. Guo YG (2003) Development of low cost high performance permanent magnet motors using new soft magnetic composite materials, UTS thesis (PhD)

    Google Scholar 

  25. Guo YG, Zhu JG, Watterson PA, Wei Wu (2006) Development of a PM transverse flux motor with soft magnetic composite core. IEEE Trans Energy Conver 21(2):426–434

    Article  Google Scholar 

  26. Guo YG, Zhu JG, Watterson PA, Wei Wu (2003) Comparative study of 3-D flux electrical machines with soft magnetic composite cores. IEEE Trans Ind Appl 39(6):1696–1703

    Article  Google Scholar 

  27. Guo YG, Zhu JG, Dorrell D (2009) Design and analysis of a claw pole PM motor with molded SMC core. IEEE Trans Magn 45(10):582–4585

    Google Scholar 

  28. Lei G, Shao KR, Guo YG, Zhu JG (2012) Multi-objective sequential optimization method for the design of industrial electromagnetic devices. IEEE Trans Magn 48(11):4538–4541

    Article  Google Scholar 

  29. Lei G, Guo YG, Zhu JG et al (2012) System level six sigma robust optimization of a drive system with PM transverse flux machine. IEEE Trans Magn 48(2):923–926

    Article  Google Scholar 

  30. Lei G, Zhu JG, Guo YG, Hu JF, Xu W, Shao KR (2013) Robust design optimization of PM-SMC motors for Six Sigma quality manufacturing. IEEE Trans Magn 49(7):3953–3956

    Article  Google Scholar 

  31. Lei G, Zhu JG, Guo YG, Shao KR, Xu W (2014) Multiobjective sequential design optimization of PM-SMC motors for six sigma quality manufacturing. IEEE Trans Magn, 50(2). Article 7017704

    Google Scholar 

  32. Liu CC, Zhu JG, Wang YH, Guo YG, Lei G, Liu XY (2015) Development of a low-cost double rotor axial flux motor with soft magnetic composite and ferrite permanent magnet materials. J Appl Phys, 117(17). Article # 17B507

    Google Scholar 

  33. Teng QF, Zhu JG, Wang TS, Lei G (2012) Fault tolerant direct torque control of three-phase permanent magnet synchronous motors. WSEAS Trans Syst 8(11):465–476

    Google Scholar 

  34. Teng QF, Bai J, Zhu JG, Sun Y (2013) Fault tolerant model predictive control of three-phase permanent magnet synchronous motors. WSEAS Trans Syst 12(8):385–397

    Google Scholar 

  35. Wang Y (2011) Investigation of rotor position detection schemes for PMSM drives based on analytical machine model incorporating nonlinear saliencies, UTS thesis (PhD)

    Google Scholar 

  36. Wang TS (2013) Model predictive torque control of PMSM with duty ratio optimization for torque ripple reduction, UTS thesis (Master degree)

    Google Scholar 

  37. Kim SY, Lee W, Rho MS, Park SY (2010) Effective dead-time compensation using a simple vectorial disturbance estimator in PMSM drives. IEEE Trans Ind Electron 57(5):1609–1614

    Article  Google Scholar 

  38. Lee J, Hong J, Nam K, Ortega R, Praly L, Astolfi A (2010) Sensorless control of surface-mount permanent-magnet synchronous motors based on a nonlinear observer. IEEE Trans Power Electron 25(2):290–297

    Article  Google Scholar 

  39. Genduso F, Miceli R, Rando C, Galluzzo GR (2010) Back EMF sensorless-control algorithm for high-dynamic performance PMSM. IEEE Trans Ind Electron 57(6):2092–2100

    Article  Google Scholar 

  40. Takahashi I, Noguchi T (1986) A new quick-response and high-efficiency control strategy of an induction motor. IEEE Trans Ind Appl 22(5):820–827

    Article  Google Scholar 

  41. Depenbrock M (1988) Direct self-control (DSC) of inverter-fed induction machine. IEEE Trans Power Electron 3(4):420–429

    Article  Google Scholar 

  42. Buja GS, Kazmierkowski MP (2004) Direct torque control of PWM inverter-fed AC motors-A survey. IEEE Trans Ind Electron 51(4):744–757

    Article  Google Scholar 

  43. Lai YS, Chen JH (2001) A new approach to direct torque control of induction motor drives for constant inverter switching frequency and torque ripple reduction. IEEE Trans Energy Convers 16(3):220–227

    Article  MathSciNet  Google Scholar 

  44. Lascu C, Trzynadlowski A (2004) A sensorless hybrid DTC drive for high-volume low-cost applications. IEEE Trans Ind Electron 51(5):1048–1055

    Article  Google Scholar 

  45. Zhang Y, Zhu J, Xu W, Hu J, Dorrell DG, Zhao Z (2010) Speed sensorless stator flux oriented control of three-level inverter-fed induction motor drive based on fuzzy logic and sliding mode control. In: Proceedings of 36th IEEE IECON, pp 2926–293

    Google Scholar 

  46. Zhang Y, Zhu J (2011) Direct torque control of permanent magnet synchronous motor with reduced torque ripple and commutation frequency. IEEE Trans Power Electron 26(1):235–248

    Article  Google Scholar 

  47. Zhang Y, Zhu J (2011) A novel duty cycle control strategy to reduce both torque and flux ripples for DTC of permanent magnet synchronous motor drives with switching frequency reduction. IEEE Trans Power Electron 26(10):3055–3067

    Article  Google Scholar 

  48. Zhang Y, Zhu J, Xu W, Guo Y (2011) A simple method to reduce torque ripple in direct torque-controlled permanent-magnet synchronous motor by using vectors with variable amplitude and angle. IEEE Trans Ind Electron 58(7):2848–2859

    Article  Google Scholar 

  49. Wang TS, Zhu JG, Zhang YC (2011) Model predictive torque control for PMSM with duty ratio optimization. In Proceedings of 2011 international conference on electrical machines and systems (ICEMS), pp 1–5, 20–23 August 2011

    Google Scholar 

  50. Miranda H, Cortes P, Yuz J, Rodriguez J (2009) Predictive torque control of induction machines based on state-space models. IEEE Trans Ind Electron 56(6):1916–1924

    Article  Google Scholar 

  51. Geyer T, Papafotiou G, Morari M (2009) Model predictive direct torque control—Part I: Concept, algorithm, and analysis. IEEE Trans Ind Electron 56(6):1894–1905

    Article  Google Scholar 

  52. Kouro S, Cortes P, Vargas R, Ammann U, Rodriguez J (2009) Model predictive control—a simple and powerful method to control power converters. IEEE Trans Ind Electron 56(6):1826–1838

    Article  Google Scholar 

  53. Morel F, Retif J-M, Lin-Shi X, Valentin C (2008) Permanent magnet synchronous machine hybrid torque control. IEEE Trans Ind Electron 55(2):501–511

    Article  Google Scholar 

  54. Drobnic K, Nemec M, Nedeljkovic D, Ambrozic V (2009) Predictive direct control applied to AC drives and active power filter. IEEE Trans Ind Electron 56(6):1884–1893

    Article  Google Scholar 

  55. Zhang Y, Xie W (2014) Low complexity model predictive control-single vector-based approach. IEEE Trans Power Electron 29(10):5532–5541

    Article  Google Scholar 

  56. Zhang Y, Qu C (2015) Model predictive direct power control of PWM rectifiers under unbalanced network conditions. IEEE Trans Ind Electron 62(7):4011–4022

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Lei .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lei, G., Zhu, J., Guo, Y. (2016). Design Fundamentals of Electrical Machines and Drive Systems. In: Multidisciplinary Design Optimization Methods for Electrical Machines and Drive Systems. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49271-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49271-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49269-7

  • Online ISBN: 978-3-662-49271-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics