Skip to main content

Part of the book series: Power Systems ((POWSYS))

Abstract

This chapter presents a brief introduction focusing on various aspects of electrical machines, drive systems, their applications, energy usage, and the state-of-art design optimization methods. The design optimization of electrical machines and drive system is a multi-disciplinary, multi-objective, multi-level, high-dimensional, highly nonlinear and strongly coupled problem, which has long been a big challenge in both research and industry communities. The contents of this chapter form a good foundation for the whole book, and pave a smooth path to major goal of this book to present efficient design optimization methods for achieving high-performance high-quality electrical machines and drive systems for challenging applications, such as green energy systems and electric vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waide P, Brunner CU (2011) Energy-efficiency policy opportunities for electric motor-driven systems. International energy agency working paper, energy efficiency series, Paris

    Google Scholar 

  2. Industrial efficiency technology database. The Institute for Industrial Productivity (2015). http://ietd.iipnetwork.org/content/motor-systems. Accessed on 20 June 2015

  3. Dorrell DG (2014) A review of the methods for improving the efficiency of drive motors to meet IE4 efficiency standards. J Power Electron 14(5):842–851

    Article  Google Scholar 

  4. Saidur R (2010) A review on electrical motors energy use and energy savings. Renew Sustain Energy Rev 14:877–898

    Article  Google Scholar 

  5. Kumar A, Schei T et al (2011) Hydropower. In: IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge

    Google Scholar 

  6. Islam MR, Lei G, Guo YG, Zhu JG (2014) Optimal design of high frequency magnetic links for power converters used in grid connected renewable energy systems. IEEE Trans Magn 50(11), Article 2006204

    Google Scholar 

  7. Islam MR, Guo YG, Zhu JG (2014) Power converters for medium voltage networks. Springer, Germany

    Book  Google Scholar 

  8. Islam MR, Guo YG, Lin ZW, Zhu JG (2014) An amorphous alloy core medium frequency magnetic-link for medium voltage photovoltaic inverters. J Appl Phys 115(17), Article 17E710

    Google Scholar 

  9. Islam MR, Guo YG, Zhu JG (2013) A medium frequency transformer with multiple secondary windings for medium voltage converter based wind turbine power generating systems. J Appl Phys 113(17), Article 17A324

    Google Scholar 

  10. Xu W, Lei G, Zhang YC, Wang TS, Zhu JG (2012) Development of electrical drive system for the UTS PHEV. In: Proceedings of IEEE energy conversion congress and exposition (ECCE). Raleigh, No. EC-1300. 15–20 Sept 2012

    Google Scholar 

  11. Mohammed OA, Lowther DA, Lean MH, Alhalabi B (2001) On the creation of a generalized design optimization environment for electromagnetic devices. IEEE Trans Magn 37(5):3562–3565

    Article  Google Scholar 

  12. Fahimi B, Mohammed O (2015) Optimal design of electrical machines. IEEE Trans Energy Convers 30(3):1143

    Google Scholar 

  13. Hasanien HM, Abd-Rabou AS, Sakr SM (2010) Design optimization of transverse flux linear motor for weight reduction and performance improvement using RSM and GA. IEEE Trans Energy Conver 25(3):598–605

    Article  Google Scholar 

  14. Hasanien HM (2011) Particle swarm design optimization of transverse flux linear motor for weight reduction and improvement of thrust force. IEEE Trans Ind. Electron 58(9):4048–4056

    Article  Google Scholar 

  15. Storn R, Price K (1997) Differential evolution- a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359

    Article  MathSciNet  MATH  Google Scholar 

  16. Lei G, Zhu JG, Guo YG, Shao KR, Xu W (2014) Multiobjective sequential design optimization of PM-SMC motors for six sigma quality manufacturing. IEEE Trans Magn 50(2), Article 7017704

    Google Scholar 

  17. Yao D, Ionel DM (2013) A review of recent developments in electrical machine design optimization methods with a permanent magnet synchronous motor benchmark study. IEEE Trans Ind Appl 49(3):1268–1275

    Article  Google Scholar 

  18. Ishikawa T, Tsukui Y, Matsunami M (1999) A combined method for the global optimization using radial basis function and deterministic approach. IEEE Trans Magn 35(3):1730–1733

    Article  Google Scholar 

  19. Lei G, Yang GY, Shao KR, Guo YG, Zhu JG, Lavers JD (2010) Electromagnetic device design based on RBF models and two new sequential optimization strategies. IEEE Trans Magn 46(8):3181–3184

    Article  Google Scholar 

  20. Wang LD, Lowther DA (2006) Selection of approximation models for electromagnetic device optimization. IEEE Trans Magn 42(2):1227–1230

    Article  Google Scholar 

  21. Lebensztajn L, Marretto CAR, Costa MC, Coulomb J-L (2004) Kriging: a useful tool for electromagnetic device optimization. IEEE Trans Magn 40(2):1196–1199

    Article  Google Scholar 

  22. Mendes MHS, Soares GL, Coulomb J-L, Vasconcelos JA (2013) Appraisal of surrogate modeling techniques: a case study of electromagnetic device. IEEE Trans Magn 49(5):1993–1996

    Article  Google Scholar 

  23. Alotto P, Baumgartner U, Freschi F, Köstinger A, Magele Ch, Renhart W, Repetto M (2008) SMES optimization benchmark extended: introducing Pareto optimal solutions into TEAM22. IEEE Trans Magn 44(6):1066–1069

    Article  Google Scholar 

  24. Guimaraes FG, Campelo F, Saldanha RR, Igarashi H, Takahashi RHC, Ramirez JA (2006) A multiobjective proposal for the TEAM benchmark problem 22. IEEE Trans Magn 42(4):1471–1474

    Article  Google Scholar 

  25. Lebensztajn L, Coulomb JL (2004) TEAM workshop problem 25: A multiobjective analysis. IEEE Trans Magn 40(2):1402–1405

    Article  Google Scholar 

  26. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  27. Reyes-Sierra M, Coello CAC (2006) Multi-objective particle swarm optimizers: A survey of the state-of-the-art. Int J Comput Intell Res 2(3):287–308

    MathSciNet  Google Scholar 

  28. Dias AHF, Vasconcelos JA (2002) Multiobjective genetic algorithms applied to solve optimization problems. IEEE Trans Magn 38(2):1133–1136

    Article  Google Scholar 

  29. dos Santos Coelho L, Alotto P (2008) Multiobjective electromagnetic optimization based on a nondominated sorting genetic approach with a chaotic crossover operator. IEEE Trans Magn 44(6):1078–1081

    Article  Google Scholar 

  30. Ho SL, Yang SY, Ni GZ, Lo EWC, Wong HC (2005) A particle swarm optimization-based method for multiobjective design optimizations. IEEE Trans Magn 41(5):1756–1759

    Article  Google Scholar 

  31. Xie DX, Sun XW, Bai BD, Yang SY (2008) Multiobjective optimization based on response surface model and its application to engineering shape design. IEEE Trans Magn 44(6):1006–1009

    Article  Google Scholar 

  32. Di Barba P (2010) Multiobjective shape design in electricity and magnetism. Lecture notes in electrical engineering, vol. 47

    Google Scholar 

  33. Lei G, Shao KR, Guo YG, Zhu JG (2012) Multi-objective sequential optimization method for the design of industrial electromagnetic devices. IEEE Trans Magn 48(11):4538–4541

    Article  Google Scholar 

  34. Lei G, Guo YG, Zhu JG et al (2015) Techniques for multilevel design optimization of permanent magnet motors. IEEE Trans Energy Conver 30(4):1574–1584

    Article  Google Scholar 

  35. Lei G, Guo YG, Zhu JG, Chen XM, Xu W (2012) Sequential subspace optimization method for electromagnetic devices design with orthogonal design technique. IEEE Trans Magn 48(2):479–482

    Article  Google Scholar 

  36. Lei G, Xu W, Hu JF, Zhu JG, Guo YG. Shao KR (2014) Multilevel design optimization of a FSPMM drive system by using sequential subspace optimization method. IEEE Trans Magn 50(2), Article 7016904

    Google Scholar 

  37. Wang SH, Meng XJ, Guo NN, Li HB, Qiu J, Zhu JG et al (2009) Multilevel optimization for surface mounted PM machine incorporating with FEM. IEEE Trans Magn 45(10):4700–4703

    Article  Google Scholar 

  38. Lei G, Liu CC, Guo YG, Zhu JG (2015) Multidisciplinary design analysis for PM motors with soft magnetic composite cores. IEEE Trans Magn 51(11), Article 8109704

    Google Scholar 

  39. Lei G, Wang TS, Guo YG, Zhu JG, Wang SH (2014) System level design optimization methods for electrical drive systems: deterministic approach. IEEE Trans Ind Electron 61(12):6591–6602

    Article  Google Scholar 

  40. Ramsden VS, Dunlop JB, Holliday WM (1992) Design of a hand-held motor using a rare earth permanent magnet rotor and glassy metal stator. In: Proceedings of international conference on electrical machines, pp 376–380

    Google Scholar 

  41. Ramsden VS, Watterson PA, Dunlop JB (1992) Optimization of REPM motors for specific applications (invited). In: Proceedings of the international workshop on rare earth materials and applications, Canberra, pp 296–307

    Google Scholar 

  42. Ramsden VS et al (1992) Optimization of a submersible brushless rare-earth permanent-magnet motor for solar power. In: Proceedings of internationl workshop on electric and magnetic fields, Liege, pp 461–464

    Google Scholar 

  43. Lovatt HC, Ramsden VS, Mecrow BC (1997) Design of an in-wheel motor for a solar-powered electric vehicle. In: Proceedings of international conference on electrical machines and drives, pp 234–238

    Google Scholar 

  44. Ramsden VS, Zhu JG et al (2001) High performance electric machines for renewable energy generation and efficient drives. J Renew Energy 22(1–3):159–167

    Article  Google Scholar 

  45. Widdowson GP, Howe D, Evison PR (1991) Computer-aided optimization of rare-earth permanent magnet actuators. In: Proceedings of international conference on computation in electromagnetics, 25–27 Nov 1991, pp 93–96

    Google Scholar 

  46. Chhaya SM, Bose BK (1993) Expert system based automated simulation and design optimization of a voltage-fed inverter for induction motor drive. Int Conf IECI 2:1065–1070, 15–19 Nov 1993

    Google Scholar 

  47. Guo YG, Zhu JG, Liu DK, Wang SH (2007) Application of multi-level mult-domain modelling in the design and analysis of a PM transverse flux motor with SMC core. In: Proceedings of the 7th international conference on power electronics and drive systems (PEDS07), Bangkok, Thailand, pp 27–31

    Google Scholar 

  48. Lei G, Liu CC, Zhu JG, Guo YG (in press) Robust multidisciplinary design optimization of PM machines with soft magnetic composite cores for batch production. IEEE Trans Magn (in press)

    Google Scholar 

  49. Guo YG, Zhu JG, Dorrell D (2009) Design and analysis of a claw pole PM motor with molded SMC core. IEEE Trans Magn 45(10):582–4585

    Google Scholar 

  50. Zhu JG, Guo YG, Lin ZW, Li YJ, Huang YK (2011) Development of PM transverse flux motors with soft magnetic composite cores. IEEE Trans Magn 47(10):4376–4383

    Article  Google Scholar 

  51. Guo YG, Zhu JG, Watterson PA, Wei Wu (2006) Development of a PM transverse flux motor with soft magnetic composite core. IEEE Trans Energy Conver 21(2):426–434

    Article  Google Scholar 

  52. Huang YK, Zhu JG et al (2009) Thermal analysis of high-speed SMC motor based on thermal network and 3D FEA with rotational core loss included. IEEE Trans Magn 45(106):4680–4683

    Article  Google Scholar 

  53. Liu CC, Zhu JG, Wang YH, Guo YG, Lei G, Liu XJ (2015) Development of a low-cost double rotor axial flux motor with soft magnetic composite and ferrite permanent magnet materials. J. Appl Phys 117(17), Article# 17B507

    Google Scholar 

  54. Zhu ZQ, Howe D (2007) Electrical machines and drives for electric, hybrid, and fuel cell vehicles. Proc IEEE 95(4):746–765

    Article  Google Scholar 

  55. Emadi A, Lee YJ, Rajashekara K (2008) Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles. IEEE Trans Ind Electron 55(6):2237–2245

    Article  Google Scholar 

  56. Kreuawan S, Gillon F, Brochet P (2008) Optimal design of permanent magnet motor using multidisciplinary design optimization. In: Proceeings of 18th international conference on electrical machines, Vilamoura, 6–9 Sept 2008, pp 1–6

    Google Scholar 

  57. Vese I, Marignetti F, Radulescu MM (2010) Multiphysics approach to numerical modeling of a permanent-magnet tubular linear motor. IEEE Trans Ind Electron 57(1):320–326

    Article  Google Scholar 

  58. Buja GS, Kazmierkowski MP (2004) Direct torque control of PWM inverter-fed AC motors—a survey. IEEE Trans Ind Electron 51(4):744–757

    Article  Google Scholar 

  59. Kouro S, Cortes P, Vargas R, Ammann U, Rodriguez J (2009) Model predictive control—a simple and powerful method to control power converters. IEEE Trans Ind Electron 56(6):1826–1838

    Article  Google Scholar 

  60. Bolognani S, Bolognani S, Peretti L, Zigliotto M (2009) Design and implementation of model predictive control for electrical motor drives. IEEE Trans Ind Electron 56(6):1925–1936

    Article  Google Scholar 

  61. Xia CL, Wang YF, Shi TN (2013) Implementation of finite-state model predictive control for commutation torque ripple minimization of permanent-magnet brushless DC motor. IEEE Trans Ind Electron 60(3):896–905

    Article  Google Scholar 

  62. Morel F, Lin-Shi XF, Retif J-M, Allard B, Buttay C (2009) A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive. IEEE Trans Ind Electron 56(7):2715–2728

    Article  Google Scholar 

  63. Zhang YC, Zhu JG, Xu W, Guo YG (2011) A simple method to reduce torque ripple in direct torque-controlled permanent-magnet synchronous motor by using vectors with variable amplitude and angle. IEEE Trans Ind Electron 58(7):2848–2859

    Article  Google Scholar 

  64. Wang TS, Zhu JG, Zhang YC (2011) Model predictive torque control for PMSM with duty ratio optimization. In: Proceedings of ICEMS, 20–23 Aug 2011, pp 1-5

    Google Scholar 

  65. Liu C-H, Hsu Y-Y (2010) Design of a self-tuning PI controller for a STATCOM using particle swarm optimization. IEEE Trans Ind Electron 57(2):702–715

    Article  Google Scholar 

  66. Khan MA, Husain I, Islam MR, Klass JT (2014) Design of experiments to address manufacturing tolerances and process variations influencing cogging torque and back EMF in the mass production of the permanent-magnet synchronous motors. IEEE Trans Ind Appl 50(1):346–355

    Article  Google Scholar 

  67. Coenen I, Giet M, Hameyer K (2011) Manufacturing tolerances: Estimation and prediction of cogging torque influenced by magnetization faults. In: Proceedings of 14th European conference on power electronics and applications, pp 1–9

    Google Scholar 

  68. Gasparin L, Fiser R (2011) Impact of manufacturing imperfections on cogging torque level in PMSM. In: Proceedings of 2011 IEEE ninth international conference on power electronics and drive systems (PEDS), pp 1055–1060

    Google Scholar 

  69. Lei G, Wang TS, Zhu JG, Guo YG, Wang SH (2015) System level design optimization method for electrical drive system: robust approach. IEEE Trans Ind Electron 62(8):4702–4713

    Article  Google Scholar 

  70. Lei G, Guo YG, Zhu JG et al (2012) System level six sigma robust optimization of a drive system with PM transverse flux machine. IEEE Trans Magn 48(2):923–926

    Article  Google Scholar 

  71. Lei G, Zhu JG, Guo YG, Hu JF, Xu W, Shao KR (2013) Robust design optimization of PM-SMC motors for Six Sigma quality manufacturing. IEEE Trans Magn 49(7):3953–3956

    Article  Google Scholar 

  72. Taguchi G, Chowdhury S, Wu Y (2004) Taguchi’s quality engineering handbook, Wiley

    Google Scholar 

  73. Omekanda AM (2006) Robust torque and torque-per-inertia optimization of a switched reluctance motor using the Taguchi methods. IEEE Trans Ind Appl 42(2):473–478

    Article  Google Scholar 

  74. Kim S-I, Lee J-Y, Kim Y-K et al (2005) Optimization for reduction of torque ripple in interior permanent magnet motor by using the Taguchi method. IEEE Trans Magn 41(5):1796–1799

    Article  Google Scholar 

  75. Ashabani M, Mohamed YA, Milimonfared J (2010) Optimum design of tubular permanent-magnet motors for thrust characteristics improvement by combined Taguchi-neural network approach. IEEE Trans Magn 46(12):4092–4100

    Article  Google Scholar 

  76. Hwang C-C, Lyu L-Y, Liu C-T, Li P-L (2008) Optimal design of an SPM motor using genetic algorithms and Taguchi method. IEEE Trans Magn 44(11):4325–4328

    Article  Google Scholar 

  77. Lee S, Kim K, Cho S et al (2014) Optimal design of interior permanent magnet synchronous motor considering the manufacturing tolerances using Taguchi robust design. IET Electr Power Appl 8(1):23–28

    Article  MathSciNet  Google Scholar 

  78. Koch PN, Yang RJ, Gu L (2004) Design for six sigma through robust optimization. Struct Multidiscipl Optim 26(3–4):235–248

    Article  Google Scholar 

  79. Meng XJ, Wang SH, Qiu J, Zhang QH, Zhu JG, Guo YG, Liu DK (2011) Robust multilevel optimization of PMSM using design for six sigma. IEEE Trans Magn 47(10):3248–3251

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Lei .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lei, G., Zhu, J., Guo, Y. (2016). Introduction. In: Multidisciplinary Design Optimization Methods for Electrical Machines and Drive Systems. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49271-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49271-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49269-7

  • Online ISBN: 978-3-662-49271-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics