Skip to main content

The Improvement of a Specific Material—Bismuth Telluride

  • Chapter
  • First Online:
Introduction to Thermoelectricity

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 121))

Abstract

This chapter outlines the way in which the properties of the most important group of thermoelectric materials, those based on bismuth telluride, have improved with time. The properties of pure bismuth telluride are presented with attention being drawn to the anisotropy of the transport parameters. Diffusion in bismuth telluride associated with its layered structure is discussed. The improved properties of solid solutions are described. It is shown how the production of bismuth telluride alloys has developed from the laboratory to the production line. The modifications to the composition, which must be made for the material to be used in generators as well as refrigerators, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.J. Goldsmid, R.W. Douglas, Br. J. Appl. Phys. 5, 386 (1954)

    Article  ADS  Google Scholar 

  2. J.R. Drabble, C.H.L. Goodman, J. Phys. Chem. Solids 5, 142 (1958)

    Article  ADS  Google Scholar 

  3. A.V. Ioffe, A.F. Ioffe, Dokl. Akad. Nauk SSSR 97, 821 (1954)

    Google Scholar 

  4. R.W. Keyes, Phys. Rev. 115, 564 (1959)

    Article  ADS  Google Scholar 

  5. H.J. Goldsmid, J. Electron. 1, 218 (1955)

    Google Scholar 

  6. H.J. Goldsmid, A.R. Sheard, D.A. Wright, Br. J. Appl. Phys. 9, 365 (1958)

    Article  ADS  Google Scholar 

  7. J.S. Blakemore, Solid State Physics, 2nd edn. (Cambridge University Press, Cambridge, 1985), p. 167

    Book  Google Scholar 

  8. J.R. Drabble, R. Wolfe, Proc. Phys. Soc. B 69, 1101 (1956)

    Article  ADS  Google Scholar 

  9. J.R. Drabble, R.D. Groves, R. Wolfe, Proc. Phys. Soc. 71, 430 (1958)

    Article  ADS  Google Scholar 

  10. A.E. Bowley, R.T. Delves, H.J. Goldsmid, Proc. Phys. Soc. 72, 401 (1958)

    Article  ADS  Google Scholar 

  11. R. Mansfield, W. Williams, Proc. Phys. Soc., 72, 733 (10958)

    Google Scholar 

  12. L.P. Caywood, G.R. Miller, Phys. Rev. B 2, 3209 (1970)

    Article  ADS  Google Scholar 

  13. L.R. Testardi, P.J. Stiles, E.H. Burshstein, Bull. Am. Phys. Soc. 7, 548 (1962)

    Google Scholar 

  14. R. Sehr, L.R. Testardi, J. Appl. Phys. 34, 2754 (1963)

    Article  ADS  Google Scholar 

  15. J. Black, E.M. Conwell, L. Seigle, C.W. Spencer, J. Phys. Chem. Solids 2, 240 (1957)

    Article  ADS  Google Scholar 

  16. I.G. Austin, Proc. Phys. Soc. 72, 545 (1958)

    Article  ADS  Google Scholar 

  17. D.L. Greenaway, G. Harbeke, J. Phys. Chem. Solids 26, 1585 (1965)

    Article  ADS  Google Scholar 

  18. A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch, London, 1957), p. 146

    Google Scholar 

  19. H.J. Goldsmid, J. Thermoelectricity, No. 4, 31 (2006)

    Google Scholar 

  20. R.O. Carlson, J. Phys. Chem. Solids 13, 65 (1960)

    Article  ADS  Google Scholar 

  21. A.F. Ioffe, S.V. Airepetyants, A.V. Ioffe, N.V. Kolomoets, L.S. Stil’bans, Dokl. Akad. Nauk. SSSR, 106, 981 (1956)

    Google Scholar 

  22. S.V. Airapetyants, B.A. Efimova, T.S. Stavitskaya, L.S. Stil’bans, L.M. Sysoeva, Zh. Tekh. Fiz. 27, 2167 (1957)

    Google Scholar 

  23. F.D. Rosi, B. Abeles, R.V. Jensen, J. Phys. Chem. Solids 10, 191 (1959)

    Article  ADS  Google Scholar 

  24. U. Birkholz, Z. Naturforsch. A 13, 780 (1958)

    Article  ADS  Google Scholar 

  25. H.J. Goldsmid, J. Appl. Phys. 32, 2198 (1961)

    Article  ADS  Google Scholar 

  26. C.H. Champness, W.B. Muir, P.T. Chiang, Can. J. Phys. 45, 3611 (1967)

    Article  ADS  Google Scholar 

  27. H.J. Goldsmid, R.T. Delves, GEC Jnl. 28, 102 (1961)

    Google Scholar 

  28. W.M. Yim, F.D. Rosi, Solid-State Electron. 15, 1121 (1972)

    Article  ADS  Google Scholar 

  29. A.W. Penn, Private Communication

    Google Scholar 

  30. H.J. Goldsmid, F.A. Underwood, Adv. Energy Conv. 7, 297 (1968)

    Article  Google Scholar 

  31. S.S. Kim, S. Yamamoto, T. Azaiwa, J. Alloys Compd. 375, 107 (2004)

    Article  Google Scholar 

  32. T. Durst, H.J. Goldsmid, L.B. Harris, J. Mater. Sci. Lett. 16, 2632 (1981)

    Article  ADS  Google Scholar 

  33. H.J. Goldsmid, Phys. Status Solidi A, 1–4, DOI 10.1002 (2008)

    Google Scholar 

  34. M. Takashiri, K. Miyazaki, H. Tsukamoto, Thin Solid Films 516, 6336 (2008)

    Article  ADS  Google Scholar 

  35. V.A. Kutasov, L.N. Lukyanova, M.V. Vedernikov, Thermoelectrics Handbook: Macro to Nano, ed. by D.M. Rowe (CRC Taylor and Francis, Boca Raton, 2006), p. 37-1

    Google Scholar 

  36. M.V. Vedernikov, V.A. Kutasov, L.N. Luk’yanova, P.P. Konstantinov, in Proceedings of the 16th International Conference on Thermoelectrics, Dresden, IEEE, p. 56 (1997)

    Google Scholar 

  37. H.J. Goldsmid, Ph.D. Thesis, University of London (1957)

    Google Scholar 

  38. R.B. Mallinson, J.R. Rayne, R.W. Ure, Phys. Rev. 175, 1049 (1968)

    Article  ADS  Google Scholar 

  39. C.M. Bhandari, D.M. Rowe, Thermal Conduction in Semiconductors (Wiley Eastern, New Delhi, 1988)

    Google Scholar 

  40. H.J. Goldsmid, Materials 7, 2577 (2014)

    Article  ADS  Google Scholar 

  41. K. Matsuura, D.M. Rowe, CRC Handbook of Thermoelectrics, ed. by D.M. Rowe (CRC Press, Boca Raton, 1994), p. 573

    Google Scholar 

  42. O. Yamashita, S. Tomiyoshi, J. Appl. Phys. 95, 161 (2004)

    Article  ADS  Google Scholar 

  43. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Science 321, 554 (2008)

    Article  ADS  Google Scholar 

  44. J.P. Heremans, B. Wiendlocha, A.M. Chamoire, Energy Environ. Sci. 5, 5510 (2012)

    Article  Google Scholar 

  45. C.M. Jaworski, V. Kulbachinskii, J.P. Heremans, Phys. Rev. B: Condens. Matter Mater. Phys. 80, 233201 (2009)

    Article  ADS  Google Scholar 

  46. K.H. Lee, S.M. Choi, J.W. Roh, S. Hwang, S.I. Kim, W.H. Shin, H.J. Park, J.H. Lee, S.W. Kim, D.J. Yang, J. Electron. Mater. 44, 1531 (2015)

    Article  ADS  Google Scholar 

  47. I.H. Kim, S.M. Choi, W.S. Seo, D.I. Cheong, J. Korean Phys. Soc. 61, 1376 (2012)

    Article  ADS  Google Scholar 

  48. J.L. Cui, L.D. Mao, W. Yang, X.B. Xu, D.Y. Chen, W.J. Xiu, J. Solid State Chem. 180, 3583 (2007)

    Article  ADS  Google Scholar 

  49. R. Venkatasubramanian, E. Silvola, T. Colpitts, B. O’Quinn, Nature 413, 597 (2001)

    Article  ADS  Google Scholar 

  50. U. Ghoshal, S. Ghoshal, C. McDowell, L. Shi, S. Cordes, M. Farinelli, Appl. Phys. Lett. 80, 3006 (2002)

    Article  ADS  Google Scholar 

  51. Z. Zhang, Y. Wu, H. Zhang, Z. Zong and Z. Hu, J. Mater. Sci.—Mater. Electron. 26, 1619 (2015)

    Google Scholar 

  52. L.P. Hu, T.J. Zhu, X.Q. Yue, X.H. Liu, Y.G. Wang, Z.J. Xua, X.B. Zhao, Acta Mater. 85, 270 (2015)

    Article  Google Scholar 

  53. M. Tan, Y. Dong, Y. Hao, Chem. Phys. Lett. 584, 159 (2013)

    Article  ADS  Google Scholar 

  54. T. Zhang, Y. Zhang, W. Li, G. Xu, Appl. Phys. Lett. 98, 22104 (2011)

    Article  Google Scholar 

  55. K.H. Lee, H.S. Kim, S.I. Kim, E.S. Lee, J.S. Rhyee, J.Y. Jung, I.H. Kim, Y.F. Wang, K. Koumoto, J. Electron. Mater. 41, 1165 (2012)

    Article  ADS  Google Scholar 

  56. L.P. Bulat, V.B. Osvenskii, Y.M. Parkhomenko, D.A. Pshenai-Severin, Phys. Solid State 54, 2165 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Julian Goldsmid .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goldsmid, H.J. (2016). The Improvement of a Specific Material—Bismuth Telluride. In: Introduction to Thermoelectricity. Springer Series in Materials Science, vol 121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49256-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49256-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49255-0

  • Online ISBN: 978-3-662-49256-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics