Skip to main content

Properties of Nanostructured Materials

  • Chapter
  • First Online:
Introduction to Thermoelectricity

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 121))

  • 4756 Accesses

Abstract

A simple theory of the thermoelectric effects in quantum well structures is outlined. It is shown that practical demonstrations of the improvement in the power factor due to nanostructuring are rare, probably because of experimental difficulties. It is shown, however, that there is ample evidence of nanostructured material with a reduced lattice thermal conductivity . Observations on nanoelements and on bulk nanostructures are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993)

    Article  ADS  Google Scholar 

  2. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993)

    Article  ADS  Google Scholar 

  3. Y.-M. Lin, M.S. Dresselhaus, Phys. Rev. B 68, 075304 (2003)

    Article  ADS  Google Scholar 

  4. M.S. Dresselhaus, J.P. Heremans, Thermoelectrics Handbook: Macro to Nano, ed. by D.M. Rowe (CRC Taylor and Francis, Boca Raton, 2006), p. 39-1

    Google Scholar 

  5. Y.-M. Lin, X. Sun, M.S. Dresselhaus, Phys. Rev. B 62, 4610 (2000)

    Article  ADS  Google Scholar 

  6. Y.-M. Lin, Private communication

    Google Scholar 

  7. O. Rabin, Y.-M. Lin, M.S. Dresselhaus, Appl. Phys. Lett. 79, 81 (2001)

    Article  ADS  Google Scholar 

  8. R. Venkatasubramanian, E. Silvola, T. Colpitts, B. O’Quinn, Nature 413, 597 (2001)

    Article  ADS  Google Scholar 

  9. M.N. Touzelbaev, P. Zhou, R. Venkatasubramanaian, K.E. Goodson, J. Appl. Phys. 90, 763 (2001)

    Article  ADS  Google Scholar 

  10. D.G. Cahill, S.K. Watson, R.O. Pohl, Phys. Rev. B 46, 6131 (1992)

    Article  ADS  Google Scholar 

  11. S.-M. Lee, D.G. Cahill, R. Venkatasubramanian, Appl. Phys. Lett. 70, 2957 (1997)

    Article  ADS  Google Scholar 

  12. C. Dames, G. Chen, Thermoelectrics Handbook: Macro to Nano, ed. by D.M. Rowe (CRC Taylor and Francis, Boca Raton, 2006), p. 42-1

    Google Scholar 

  13. G. Chen, Phys. Rev. B 57, 14958 (1998)

    Article  ADS  Google Scholar 

  14. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003)

    Article  ADS  Google Scholar 

  15. N. Savvides, H.J. Goldsmid, J. Phys. C: Solid State Phys. 6, 1701 (1973)

    Article  ADS  Google Scholar 

  16. D. Greig, Phys. Rev. 120, 358 (1960)

    Article  ADS  Google Scholar 

  17. J.P. Heremans, C.M. Thrush, D.T. Morelli, M.-C. Wu, Phys. Rev. Lett. 88, 216801 (2002)

    Article  ADS  Google Scholar 

  18. Y.-M. Lin, O. Rabin, S.B. Cronin, J.Y. Ying, M.S. Dresselhaus, Appl. Phys. Lett. 81, 2403 (2002)

    Article  ADS  Google Scholar 

  19. L. Li, Y.W. Yang, X.H. Huang, G.H. Li, R. Ang, L.D. Zhang, Appl. Phys. Lett. 88, 103119 (2006)

    Article  ADS  Google Scholar 

  20. T.C. Harman, D.L. Spears, M.P. Walsh, J. Electron. Mats. 28, L1 (1999)

    Article  ADS  Google Scholar 

  21. T.C. Harman, M.P. Walsh, B.E. LaForge, G.W. Turner, J. Electron. Mats. 34, L19 (2005)

    Article  ADS  Google Scholar 

  22. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)

    Article  ADS  Google Scholar 

  23. B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashae, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, Science, 10.1126, 20 March (2008)

    Google Scholar 

  24. R. Venkatasubramanian, E. Silvola, B. O’Quinn, Thermoelectrics Handbook: Macro to Nano, ed. by D.M. Rowe (CRC Taylor and Francis, Boca Raton, 2006), p. 49-1

    Google Scholar 

  25. R. Venkatasubramanian, T. Colpitts, E. Watko, M. Lamvik, N. El-Masry, J. Crystal Growth 170, 817 (1997)

    Article  ADS  Google Scholar 

  26. H. Cui, I. Bhat, B. O’Quinn, R. Venkatasubramanian, J. Electron. Mater. 30, 1376 (2001)

    Article  ADS  Google Scholar 

  27. Z. Zhang, X. Sun, M.S. Dresselhaus, J.Y. Ying, Appl. Phys. Lett. 73, 1589 (1998)

    Article  ADS  Google Scholar 

  28. J. Keyani. A.M. Stacy, J. Sharp, Appl. Phys. Lett. 89, 233106 (2006)

    Google Scholar 

  29. W. Wang, X. Lu, T. Zhang, G. Zhang, W. Jiang, X. Li, J. Amer. Chem. Soc. 129, 6702 (2007)

    Article  Google Scholar 

  30. L. Trahey, C.R. Becker, A.M. Stacy, Nano Lett. 7, 2535 (2007)

    Article  ADS  Google Scholar 

  31. X. Dou, G. Li, X. Huang, L. Li, J. Phys. Chem. C 112, 8167 (2008)

    Article  Google Scholar 

  32. F. Xiao, B. Yoo, K.H. Lee, N.V. Myung, J. Amer. Chem. Soc. 129, 10068 (2007)

    Article  Google Scholar 

  33. Y.Q. Cao, T.J. Zhu, X.B. Zhao, J. Alloy. Compd. 449, 109 (2008)

    Article  Google Scholar 

  34. X.-H. Li, B. Zhou, L. Pu, J.-J. Zhu, Cryst. Growth Des. 8, 771 (2008)

    Article  Google Scholar 

  35. E. Koukharenko, X. Li, I. Nandhakumar, B. Schiedt, C. Trautmann, J. Speed, M.J. Tudor, S.P. Beeby, N.M. White, Electronics. Lett. 44, 500 (2008)

    Article  Google Scholar 

  36. T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Science 297, 5590 (2002)

    Article  Google Scholar 

  37. T.P. Hogan, A. Downey, J. Short, J. D’Angelo, C.-I. Wu, E. Quarez, J. Androulakis, P.F.P. Poudeu, J.R. Sootsman, D.-Y. Chung, M.G. Kanatzidis, S.D. Mahanti, E.J. Timm, H. Schock, F. Ren, J. Johnson, E.D. Case, J. Electron. Mater. 36, 704 (2007)

    Article  ADS  Google Scholar 

  38. J.Z. Hu, X.B. Zhao, T.J. Zhu, A.J. Zhou, Phys. Scr. T129, 120 (2007)

    Article  ADS  Google Scholar 

  39. Y.Q. Cao, T.J. Zhu, X.B. Zhao, X.B. Zhang, J.P. Tu, Appl. Phys. A 92, 321 (2008)

    Article  ADS  Google Scholar 

  40. M. Zhou, J.-F. Li, T. Kita, J. Amer. Chem. Soc. 130, 4527 (2008)

    Article  Google Scholar 

  41. D.G. Ebling, A. Jacquot, M. Jägle, H. Böttner, U. Kühn, L. Kirste, Phys. State Solidi (RRL) 1, 238 (2007)

    Article  Google Scholar 

  42. H. Yang, J.H. Bahk, T. Day, A.M.S. Mohammed, G.J. Snyder, A. Shakouri, Y. Wu, Nano Lett. 15, 1349 (2015)

    Article  ADS  Google Scholar 

  43. J.E. Cornett, O. Rabin, Appl. Phys. Lett. 98, 182104 (2011)

    Google Scholar 

  44. C.J. Vineis, A. Shakouri, A. Majumdar, M.G. Kanatzidis, Adv. Mater. 22, 3970 (2010)

    Article  Google Scholar 

  45. M. Zebarjadi, N. Esfarjani, Z. Bian, A. Shakouri, Nano Lett. 11, 225 (2011)

    Article  ADS  Google Scholar 

  46. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Science 321, 554 (2008)

    Article  ADS  Google Scholar 

  47. P. Pichanusakorn, P.R. Bandaru, J. Appl. Phys. 107, 074304 (2010)

    Article  ADS  Google Scholar 

  48. L.P. Bulat, V.B. Osvenskii, D.A. Pshenay-Severin, J. Electron. Mater. 43, 3780 (2014)

    Article  ADS  Google Scholar 

  49. F. Yuan, L.X. Gang, Sci. China: Phys. Mech. Astron. 58, 060701 (2015)

    Google Scholar 

  50. A. Holtzman, E. Shapira, V. Selzer, Nanotechnology 23, 495711 (2012)

    Article  Google Scholar 

  51. Y. Lan, A.J. Minnich, G. Chen, Z. Ren, Adv. Funct. Mater. 20, 357 (2010)

    Article  Google Scholar 

  52. H. Wang, J.H. Bahk, C. Kang, J. Hwang, K. Kim, J. Kim, P. Burke, J.E. Bowers, A.C. Gossard, A. Shakouri, W. Kim, Proc. Natl. Acad. Sci. U.S.A. 111, 10949 (2014)

    Article  ADS  Google Scholar 

  53. Z. Li, Q. Sun, X.D. Yao, Z.H. Zhu, G.Q. Lu, J. Mater. Chem. 22, 22821 (2012)

    Article  Google Scholar 

  54. T.J. Zhu, Y.Q. Cao, Q. Zhang, X.B. Zhao, J. Electron. Mater. 39, 1990 (2010)

    Article  ADS  Google Scholar 

  55. F. Maglia., I.G. Traedici, U.A. Tamburini, J. Eur. Ceram. Soc. 33, 1045 (2013)

    Google Scholar 

  56. Y. Ma, R. Heijl, A.E.C. Palmqvist, J. Mater. Sci. 48, 2767 (2013)

    Article  ADS  Google Scholar 

  57. S.K. Bux, J.P. Fleurial, R.B. Kaner, Chem. Commun. 46, 8311 (2010)

    Article  Google Scholar 

  58. D. Vasilevskiy, M.S. Dawood, J.P. Masse, S. Turenne, R.A. Masut, J. Electron. Mater. 39, 1890 (2010)

    Article  ADS  Google Scholar 

  59. A. Mavrokefalos, A.L. Moore, M.T. Pettes, L. Shi, W. Wang, X. Li, J. Appl. Phys. 105, 104318 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Julian Goldsmid .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goldsmid, H.J. (2016). Properties of Nanostructured Materials. In: Introduction to Thermoelectricity. Springer Series in Materials Science, vol 121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49256-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49256-7_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49255-0

  • Online ISBN: 978-3-662-49256-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics