PPP-Codes for Large-Scale Similarity Searching

Chapter

Abstract

Many current applications need to organize data with respect to mutual similarity between data objects. A typical general strategy to retrieve objects similar to a given sample is to access and then refine a candidate set of objects. We propose an indexing and search technique that can significantly reduce the candidate set size by combination of several space partitionings. Specifically, we propose a mapping of objects from a generic metric space onto main memory codes using several pivot spaces; our search algorithm first ranks objects within each pivot space and then aggregates these rankings producing a candidate set reduced by two orders of magnitude while keeping the same answer quality. Our approach is designed to well exploit contemporary HW: (1) larger main memories allow us to use rich and fast index, (2) multi-core CPUs well suit our parallel search algorithm, and (3) SSD disks without mechanical seeks enable efficient selective retrieval of candidate objects. The gain of the significant candidate set reduction is paid by the overhead of the candidate ranking algorithm and thus our approach is more advantageous for datasets with expensive candidate set refinement, i.e. large data objects or expensive similarity function. On real-life datasets, the search time speedup achieved by our approach is by factor of two to five.

References

  1. 1.
    Amato, G., Gennaro, C., Savino, P.: MI-File: using inverted files for scalable approximate similarity search. Multimedia Tools Appl. 71(3), 1–30 (2012)Google Scholar
  2. 2.
    Amato, G., Savino, P.: Approximate similarity search in metric spaces using inverted files. In: Proceedings of InfoScale 2008. Vico Equense, Italy, June 4–6, pp. 1–10. ICST, Brussels, Belgium (2008)Google Scholar
  3. 3.
    Batko, M., Falchi, F., Lucchese, C., Novak, D., Perego, R., Rabitti, F., Sedmidubsky, J., Zezula, P.: Building a web-scale image similarity search system. Multimedia Tools Appl. 47(3), 599–629 (2010)CrossRefGoogle Scholar
  4. 4.
    Batko, M., Novak, D., Zezula, P.: MESSIF: metric similarity search implementation framework. In: Thanos, C., Borri, F., Candela, L. (eds.) Digital Libraries: Research and Development. LNCS, vol. 4877, pp. 1–10. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Beecks, C., Lokoč, J., Seidl, T., Skopal, T.: Indexing the signature quadratic form distance for efficient content-based multimedia retrieval. In: Proceedings of the ACM International Conference on Multimedia Retrieval, p. 8 (2011)Google Scholar
  6. 6.
    Bolettieri, P., Esuli, A., Falchi, F., Lucchese, C., Perego, R., Piccioli, T., Rabitti, F.: CoPhIR: A Test Collection for Content-Based Image Retrieval. CoRR, abs/0905.4 (2009)Google Scholar
  7. 7.
    Chávez, E., Figueroa, K., Navarro, G.: Effective proximity retrieval by ordering permutations. IEEE Trans. Patt. Anal. Mach. Intell. 30(9), 1647–1658 (2008)CrossRefGoogle Scholar
  8. 8.
    Christensen, D.: Fast algorithms for the calculation of Kendalls \(\tau \). Comput. Stat. 20(1), 51–62 (2005)MATHCrossRefGoogle Scholar
  9. 9.
    Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: DeCAF: a deep convolutional activation feature for generic visual recognition. In: International Conference on Machine Learning, pp. 647–655 (2014)Google Scholar
  10. 10.
    Edsberg, O., Hetland, M.L.: Indexing inexact proximity search with distance regression in pivot space. In: Proceedings of SISAP 2010, Istanbul, Turkey, September 18–19, pp. 51–58. ACM Press, NY, USA (2010)Google Scholar
  11. 11.
    Esuli, A.: Use of permutation prefixes for efficient and scalable approximate similarity search. Inform. Process. Manag. 48(5), 889–902 (2012)CrossRefGoogle Scholar
  12. 12.
    Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2003, pp. 28–36. Society for Industrial and Appl. Math, Philadelphia, PA, USA (2003)Google Scholar
  13. 13.
    Fagin, R., Kumar, R., Sivakumar, D.: Efficient similarity search and classification via rank aggregation. In: Proceedings of ACM SIGMOD 2003. San Diego, California June 9–12, pp. 301–312. ACM Press, New York, USA (2003)Google Scholar
  14. 14.
    Gan, J., Feng, J., Fang, Q., Ng, W.: Locality-sensitive hashing scheme based on dynamic collision counting. In: Proceedings of the 2012 International Conference on Management of Data - SIGMOD 2012, pp. 541–552. ACM Press, New York, NY, USA (2012)Google Scholar
  15. 15.
    Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In: Proceedings of VLDB 1999, Edinburgh, Scotland, UK, September 7–10, pp. 518–529. Morgan Kaufmann (1999)Google Scholar
  16. 16.
    Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Trans. Patt. Anal. Mach. Intell. 33(1), 117–128 (2011)CrossRefGoogle Scholar
  17. 17.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances In Neural Information Processing Systems, pp. 1106–1114 (2012)Google Scholar
  18. 18.
    Muller-Molina, A.J., Shinohara, T.: Efficient similarity search by reducing I/O with compressed sketches. In: 2009 Second International Workshop on Similarity Search and Applications, pp. 30–38. IEEE, August 2009Google Scholar
  19. 19.
    Novak, D.: Multi-modal similarity retrieval with a shared distributed data store. In: Jung, J.J., Badica, C., Kiss, A. (eds.) INFOSCALE 2014. LNICST, vol. 139, pp. 28–37. Springer, Heidelberg (2015)Google Scholar
  20. 20.
    Novak, D., Batko, M., Zezula, P.: Metric Index: an efficient and scalable solution for precise and approximate similarity search. Inform. Syst. 36(4), 721–733 (2011)CrossRefGoogle Scholar
  21. 21.
    Novak, D., Batko, M., Zezula, P.: Large-scale Image retrieval using neural net descriptors. In: Proceedings of SIGIR 2015 (2015) (Will appear)Google Scholar
  22. 22.
    Novak, D., Kyselak, M., Zezula, P.: On locality-sensitive indexing in generic metric spaces. In: Proceedings of SISAP 2010, Istanbul, Turkey, September 18–19, pp. 59–66. ACM Press, New York, USA (2010)Google Scholar
  23. 23.
    Novak, D., Zezula, P.: Performance study of independent anchor spaces for similarity searching. Comput. J. 57(11), 1741–1755 (2014)CrossRefGoogle Scholar
  24. 24.
    Novak, D., Zezula, P.: Rank aggregation of candidate sets for efficient similarity search. In: Decker, H., Lhotská, L., Link, S., Spies, M., Wagner, R.R. (eds.) DEXA 2014, Part II. LNCS, vol. 8645, pp. 42–58. Springer, Heidelberg (2014)Google Scholar
  25. 25.
    Patella, M., Ciaccia, P.: Approximate similarity search: a multi-faceted problem. J. Discrete Algorithms 7(1), 36–48 (2009)MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Skala, M.: Counting distance permutations. J. Discrete Algorithms 7(1), 49–61 (2009)MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Torralba, A., Fergus, R., Weiss, Y.: Small codes and large image databases for recognition. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE, June 2008Google Scholar
  28. 28.
    Weiss, Y., Fergus, R., Torralba, A.: Multidimensional spectral hashing. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 340–353. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  29. 29.
    Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach. Advances in Database Systems, vol. 32. Springer, New York (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Masaryk UniversityBrnoCzech Republic

Personalised recommendations