Skip to main content

How to Smooth Entropy?

  • Conference paper
  • First Online:
SOFSEM 2016: Theory and Practice of Computer Science (SOFSEM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9587))

  • 1115 Accesses

Abstract

Smooth entropy of X is defined as possibly biggest entropy of a distribution Y close to X. It has found many applications including privacy amplification, information reconciliation, quantum information theory and even constructing random number generators. However the basic question about the optimal shape for the distribution Y has not been answered yet. In this paper we solve this problem for Renyi entropies in non-quantum settings, giving a formal treatment to an approach suggested at TCC’05 and ASIACRYPT’05. The main difference is that we use a threshold cut instead of a quantile cut to rearrange probability masses of X. As an example of application, we derive tight lower bounds on the number of bits extractable from Shannon memoryless sources.

M. Skorski—This work was partly supported by the WELCOME/2010-4/2 grant founded within the framework of the EU Innovative Economy Operational Programme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barak, B., Dodis, Y., Krawczyk, H., Pereira, O., Pietrzak, K., Standaert, F.-X., Yu, Y.: Leftover hash lemma, revisited. Cryptology ePrint Archive, Report 2011/088 (2011). http://eprint.iacr.org/

  2. Bouda, J., Krhovjak, J., Matyas, V., Svenda, P.: Towards true random number generation in mobile environments. In: Jøsang, A., Maseng, T., Knapskog, S.J. (eds.) NordSec 2009. LNCS, vol. 5838, pp. 179–189. Springer, Heidelberg (2009). http://dx.doi.org/10.1007/978-3-642-04766-4_13

    Chapter  Google Scholar 

  3. Bucci, M., Luzzi, R.: Design of testable random bit generators. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 147–156. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Cachin, C.: Smooth entropy and Rényi entropy. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 193–208. Springer, Heidelberg (1997)

    Google Scholar 

  5. Dichtl, M., Golić, J.D.: High-speed true random number generation with logic gates only. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 45–62. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Dodis, Y., Pietrzak, K., Wichs, D.: Key derivation without entropy waste. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 93–110. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  7. Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way functions. In: Proceedings of the 20th STOC, pp. 12–24 (1988)

    Google Scholar 

  8. Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.3930

    Article  MATH  MathSciNet  Google Scholar 

  9. Holenstein, T.: Pseudorandom generators from one-way functions: a simple construction for any hardness. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 443–461. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Holenstein, T., Renner, R.: On the randomness of independent experiments. IEEE Trans. Inf. Theory 57(4), 1865–1871 (2011)

    Article  MathSciNet  Google Scholar 

  11. Lacharme, P., Röck, A., Strubel, V., Videau, M.: The linux pseudorandom number generator revisited. Cryptology ePrint Archive, Report 2012/251 (2012). http://eprint.iacr.org/

  12. McKay, B.D.: On Littlewood’s estimate for the binomial distribution. Adv. Appl. Probab. 21(2), 475–478 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Renner, R.S., König, R.: Universally composable privacy amplification against quantum adversaries. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 407–425. Springer, Heidelberg (2005). http://dx.doi.org/10.1007/978-3-540-30576-7_22

    Chapter  Google Scholar 

  14. Renner, R., Wolf, S.: Smooth Renyi entropy and applications. In: ISIT 2004, Chicago, Illinois, USA, p. 232 (2004)

    Google Scholar 

  15. Renner, R.S., Wolf, S.: Simple and tight bounds for information reconciliation and privacy amplification. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 199–216. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Skorski, M.: How much randomness can be extracted from memoryless shannon entropy sources. In: WISA 2015 (2015)

    Google Scholar 

  17. Schoenmakers, B., Tjoelker, J., Tuyls, P., Verbitskiy, E.: Smooth Renyi entropy of ergodic quantum information sources. In: 2007 IEEE International Symposium on Information Theory. ISIT 2007, pp. 256–260 (2007)

    Google Scholar 

  18. Tomamichel, M.: A framework for non-asymptotic quantum information theory. Ph.D. thesis, ETH Zurich (2012)

    Google Scholar 

  19. Watanabe, S., Hayashi, M.: Non-asymptotic analysis of privacy amplification via Renyi entropy and inf-spectral entropy. In: 2013 IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 2715–2719 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Skorski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Skorski, M. (2016). How to Smooth Entropy?. In: Freivalds, R., Engels, G., Catania, B. (eds) SOFSEM 2016: Theory and Practice of Computer Science. SOFSEM 2016. Lecture Notes in Computer Science(), vol 9587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49192-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49192-8_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49191-1

  • Online ISBN: 978-3-662-49192-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics