Skip to main content

A Combinatorial Model of Two-Sided Search

  • Conference paper
  • First Online:
  • 975 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9587))

Abstract

We study a new model of combinatorial group testing in a network. An object (the target) occupies an unknown node in the network. At each time instant, we can test (or query) a subset of the nodes to learn whether the target occupies any of such nodes. Unlike the case of conventional group testing problems on graphs, the target in our model can move immediately after each test to any node adjacent to each present location. The search finishes when we are able to locate the object with some predefined accuracy s (a parameter fixed beforehand), i.e., to indicate a set of s nodes that include the location of the object.

In this paper we study two types of problems related to the above model: (i) what is the minimum value of the accuracy parameter for which a search strategy in the above sense exists; (ii) given the accuracy, what is the minimum number of tests that allow to locate the target. We study these questions on paths, cycles, and trees as underlying graphs and provide tight answer for the above questions. We also considered a restricted variant of the problem, where the number of moves of the target is bounded.

H. Aydinian—Supported by Gottfried Wilhelm Leibniz-Program BO 1734/20-1 and the DFG project BO 1734/31-1.

V. Vladimir—Supported by the Russian Foundation for Basic Research, project No.15-01-08051.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Formally, \({\mathcal T}_j\) is a function mapping the result of the first \(j-1\) tests to a subset of \({\mathcal N}\), i.e., \({\mathcal T}_j = {\mathcal T}_j(f_{T_1}(d_1), \dots , f_{T_{j-1}}(d_{j-1}))\).

References

  1. Ahlswede, R., Wegener, I.: Suchprobleme. Wiley, New York (1987). Teubner, 1979, (English translation), Search problems

    Google Scholar 

  2. Alpern, A., Fokkink, R., Gal, S., Timmer, M.: On search games that include ambush. SIAM J. Control Optim. 51, 4544–4556 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alspach, B.: Searching and sweeping graphs: a brief survey. Matematiche (Catania) 59, 5–37 (2006)

    MathSciNet  Google Scholar 

  4. Aigner, M.: Combinatorial Search. Wiley, New York (1988)

    MATH  Google Scholar 

  5. Benkoski, S.J., Monticino, M.G., Weisinger, J.R.: A survey of the search theory literature. Naval Res. Logistics 38, 469–494 (1991)

    Article  MATH  Google Scholar 

  6. Cheraghchi, M., Karbasi, A., Mohajer, S., Saligrama, V.: Graph-constrained group testing. IEEE Trans. Inf. Theor. 58(1), 248–262 (2012)

    Article  MathSciNet  Google Scholar 

  7. Cicalese, F.: Fault-Tolerant Search Algorithms. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  8. Damaschke, P.: A tight upper bound for group testing in graphs. Discrete Appl. Math. 48, 101–109 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Deppe, C.: Searching with lies and coding with feedback. In: CsiszAr, I., Katona, G.O.H., Tardos, G., Wiener, G. (eds.) Entropy, Search, Complexity, Bolyai Society Mathematical Studies, vol. 16, pp. 27–70 (2007)

    Google Scholar 

  10. Du, D., Hwang, F.: Combinatorial group testing and its applications. Series on Applied Mathematics (1993)

    Google Scholar 

  11. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching. Theor. Comput. Sci. 399(3), 236–245 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kaplan, L.: Global node selection for localization in a distributed sensor network. IEEE Trans. Aerosp. Electron. Syst. 42, 113–135 (2006)

    Article  Google Scholar 

  13. Karbasi, A., Zadimoghaddam, M.: Sequential group testing with graph constraints. In: Proceedings of IEEE Information Theory Workshop (ITW), pp. 292–296 (2012)

    Google Scholar 

  14. Knuth, D.E.: The Art of Computer Programming. Combinatorial Algorithms, Part 1, vol. 4A. Addison-Wesley Publishing, Boston (2011)

    Google Scholar 

  15. Koopman, B.: Search and Screening. Persimmon Press, New York (1946)

    Google Scholar 

  16. Pelc, A.: Searching games with errors - fifty years of coping with liars. Theor. Comput. Sci. 270, 71–109 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ramya, K., Kumar, K.P., Rao, V.S.: A survey on target tracking techniques in wireless sensor networks. Int. J. Comput. Sci. Eng. Surv. 3, 93–108 (2012)

    Article  Google Scholar 

  18. Rowaihy, H., Eswaran, S., Johnson, M., Verma, D., Bar-Noy, A., Brown, T., La Porta, T.: A survey of sensor selection schemes in wireless sensor networks. In: Proceedings of SPIE 6562, Unattended Ground, Sea, and Air Sensor Technologies and Applications IX, 65621A (2007)

    Google Scholar 

  19. Triesch, E.: A group testing problem for hypergraphs of bounded rank. Discrete Appl. Math. 66, 185–188 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinando Cicalese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aydinian, H., Cicalese, F., Deppe, C., Lebedev, V. (2016). A Combinatorial Model of Two-Sided Search. In: Freivalds, R., Engels, G., Catania, B. (eds) SOFSEM 2016: Theory and Practice of Computer Science. SOFSEM 2016. Lecture Notes in Computer Science(), vol 9587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49192-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49192-8_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49191-1

  • Online ISBN: 978-3-662-49192-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics