Advertisement

A Probe Guided Crossover Operator for More Efficient Exploration of the Search Space

  • K. Liagkouras
  • K. MetaxiotisEmail author
Chapter
  • 627 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 627)

Abstract

Crossover operators play very important role for the entire performance of evolutionary algorithms, as through the recombination of the fittest solutions, guide the population towards higher fitness regions of the search space. This study proposes a new Probe Guided Crossover (PGC) operator for the more efficient exploration of the search space. The proposed recombination operator is applied to three well-known Multiobjective Evolutionary Algorithms (MOEAs) namely the Non-dominated Sorting Genetic Algorithm II (NSGAII), the Strength Pareto Evolutionary Algorithm 2 (SPEA2) and the Indicator Based Evolutionary Algorithm (IBEA) and its performance is evaluated in comparison with the Simulated Binary Crossover (SBX). The proposed methodology is tested with the assistance of five test instances from the Li-Zhang (LZ) set of test functions. The experiments show that the PGC operator generates better results with confidence than the SBX operator.

Keywords

Multiobjective optimization Evolutionary algorithms Crossover 

References

  1. Arumugan, M.S., Rao, M.V.C., Palaniappan, R.: New hybrid genetic operators for real coded genetic algorithm to compute optimal control of a class of hybrid systems. Appl. Soft Comput. 6(1), 38–52 (2005)CrossRefGoogle Scholar
  2. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Syst. 9(2), 115–148 (1995)MathSciNetzbMATHGoogle Scholar
  3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA, II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  4. Durillo, J.J., Nebro, A.J.: jMetal: a java framework for multi-objective optimization. Adv. Eng. Softw. 42, 760–771 (2011)CrossRefGoogle Scholar
  5. Fonseca, C., Flemming, P.: Multiobjective optimization and multiple constraint handling with evolutionary algorithms—part II: application example. IEEE Trans. Syst. Man Cybern. 28, 38–47 (1998)CrossRefGoogle Scholar
  6. Koza, J.R.: Genetic Programming. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  7. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)CrossRefGoogle Scholar
  8. Liagkouras, K., Metaxiotis, K.: An elitist polynomial mutation operator for improved performance of MOEAs in computer networks. In: 22nd International Conference on Computer Communications and Networks (ICCCN), pp. 1–5 (2013). doi: 10.1109/ICCCN.2013.6614105
  9. Liagkouras, K., Metaxiotis, K.: A new probe guided mutation operator and its application for solving the cardinality constrained portfolio optimization problem. Expert Syst. Appl. 41(14), 6274–6290 (2014)CrossRefGoogle Scholar
  10. Liagkouras, K., Metaxiotis, K.: Efficient portfolio construction with the use of multiobjective evolutionary algorithms: best practices and performance metrics. Int. J. Inf. Technol. Decis. Making 14(3), 535–564 (2015). doi: 10.1142/S0219622015300013 CrossRefGoogle Scholar
  11. Metaxiotis, K., Liagkouras, K.: A fitness guided mutation operator for improved performance of MOEAs. In: IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS), pp. 751–754 (2013). doi: 10.1109/ICECS.2013.6815523
  12. Metaxiotis, K., Liagkouras, K.: Multiobjective evolutionary algorithms for portfolio management: a comprehensive literature review. Expert Syst. Appl. 39(14), 11685–11698 (2012)CrossRefGoogle Scholar
  13. Zeng, F., Decraene, J., Hean Low, M.Y., Hingston, P., Wentong, C., Suiping, Z., Chandramohan, M.: Autonomous bee colony optimization for multi-objective function. In: Proceedings of the IEEE Congress on Evolutionary Computation (2010)Google Scholar
  14. Zitzler, E., Brockhoff, D., Thiele. L.: The hypervolume indicator revisited: on the design of Pareto-compliant indicators via weighted integration. In: Conference on Evolutionary Multi-Criterion Optimization (EMO 2007), pp. 862–876. Springer, Berlin (2007)Google Scholar
  15. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)CrossRefGoogle Scholar
  16. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Decision Support Systems Laboratory, Department of InformaticsUniversity of PiraeusPiraeusGreece

Personalised recommendations