Skip to main content

Introduction

  • Chapter
  • First Online:
  • 363 Accesses

Abstract

In this chapter, we first give an overview about the Internet, including its background, history and current research challenges. We then summarize the main contents of this book in the last section of this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barab P (1964) On distributed communications networks. IEEE Trans Commun Syst 12(1):1–9

    Article  Google Scholar 

  2. Leiner B, Cerf V, Clark D (2009) A brief history of the Internet. ACM SIGCOMM Comput Commun Rev 39(5):22–31

    Article  Google Scholar 

  3. Xia R (2008) Progression of the Internet and the tendency for its future development XIA. Mech Manag Dev 23(6):172–173

    Google Scholar 

  4. Li L (1995) Computer network techniques and their progress. Telecommun Sci 11(12):51–55

    Google Scholar 

  5. Michael H (2015) ARPANET—the first Internet. http://www.livinginternet.com/i/ii_arpanet.htm. Accessed 1 June 2015

  6. Yang P, Liu Y (2006) Anatomy of Internet architecture. Comput Sci 33(6):15–20

    Google Scholar 

  7. NSFNET (2015). http://www.nsfnet-legacy.org/. Accessed 1 June 2015

  8. Living Internet (2015). NSFNET-National Science Foundation Network. http://www.livinginternet.com/i/ii_nsfnet.htm. Accessed 1 June 2015

  9. Ahlgren B, Dannewitz C, Imbrenda C et al (2012) A survey of information-centric networking. IEEE Commun Mag 50(7):26–36

    Article  Google Scholar 

  10. Xu C, Liu T, Guan J et al (2012) CMT-QA: quality-aware adaptive concurrent multipath data transfer in heterogeneous wireless networks. IEEE Trans Mob Comput 12(11):2193–2205

    Article  Google Scholar 

  11. Colonnese S, Cuomo F, Melodia T (2013) An empirical model of multiview video coding efficiency for wireless multimedia sensor networks. IEEE Trans Multimed 15(8):1800–1814

    Article  Google Scholar 

  12. Guan Z, Melodia T, Yuan D et al (2013) Jointly optimal rate control and relay selection for cooperative video streaming in wireless network. IEEE/ACM Trans Netw 21(4):1173–1186

    Article  Google Scholar 

  13. Xu C, Zhao F, Guan J et al (2013) QoE-driven user-centric VoD services in urban multihomed P2P-based vehicular networks. IEEE Trans Veh Technol 62(5):2273–2289

    Article  Google Scholar 

  14. Lien T, Lin Y, Shieh J et al (2013) A novel privacy preserving location-based service protocol with secret circular shift for K-NN search. IEEE Trans Inf Forensics Secur 8(6):863–873

    Article  Google Scholar 

  15. Karnouskos S (2004) Mobile payment: a journey through existing procedures and standardization initiatives. IEEE Commun Surv Tutorials 6(4):44–66

    Article  Google Scholar 

  16. Venkatesh J, Kumar DS (2012) Evaluation of mobile payment system and its service providers. Int J Multidiscip Res 2(4):118–123

    Google Scholar 

  17. Zhang W, Bi J, Wu J (2010) Scalability of Internet inter-domain routing. J Softw 22(1):84–100

    Article  Google Scholar 

  18. Meyer D, Zhang L, Fall K et al (2015) Report from the IAB workshop on routing and addressing, RFC 4984. http://tools.ietf.org/html/rfc4984. Accessed 1 June 2015

  19. Fisher W, Suchara M, Rexford J et al (2010) Greening backbone networks: reducing energy consumption by shutting off cables in bundled links. In: ACM SIGCOMM, 2010

    Google Scholar 

  20. Goma E, Canini M, Toledo A et al (2011) Insomnia in the access. In: ACM SIGCOMM, 2011

    Google Scholar 

  21. Mathieu B, Turong P, Peltier J (2012) Media networks. In: Mathieu B, Truong P, Peltier J et al (eds) Information-centric networking: current research activities and challenges. In: Moustafa H, Zeadally S (eds). CRC Press, pp 141–162

    Google Scholar 

  22. Louati W, Zeghlache D (2005) Network-based virtual personal overlay networks using programmable virtual routers. IEEE Commun Mag 43(8):86–94

    Article  Google Scholar 

  23. Bhagwat P, Perkins C, Tripathi S et al (1996) Network layer mobility: an architecture and survey. IEEE Pers Commun 3(3):54–64

    Article  Google Scholar 

  24. Oppliger R (1998) Security at the Internet layer. IEEE Comput 31(9):43–47

    Article  Google Scholar 

  25. Egevang K (2015) The IP network address translation (NAT), RFC 1631. http://tools.ietf.org/html/rfc1631. Accessed 1 June 2015

  26. Zhang X, Liu Z, Zhao Y et al (2008) Scalable router. J Softw 19(2):1452–1464

    Article  MathSciNet  Google Scholar 

  27. Rexford J, Dovrolis C (2010) Future Internet architecture: clean-slate versus evolutionary research. Commun ACM 53(9):36–40

    Article  Google Scholar 

  28. Pan J, Paul S, Jain R (2011) A survey of the research on future Internet architectures. IEEE Commun Mag 49(7):26–36

    Article  Google Scholar 

  29. Xylomenos G, Ververidis C, Siris V et al (2014) A survey of information-centric networking research. IEEE Commun Surv Tutorials 16(2):1024–1049

    Article  Google Scholar 

  30. Luo H, Zhang H, Zukerman M et al (2014) An incrementally deployable network architecture to support both data-centric and host-centric services. IEEE Netw 28(4):58–65

    Article  Google Scholar 

  31. Global energy network institute (2015). http://www.geni.net/. Accessed 1 June 2015

  32. Future internet design (2015). http://www.nets-find.net/. Accessed 1 June 2015

  33. Future internet architecture (2015). http://www.nets-fia.net/. Accessed 1 June 2015

  34. Zhang L, Estrin D, Jacobson V et al (2015) Named data networking (NDN) project. http://named-data.net/techreport/TR001ndn-proj.pdf. Accessed 1 June 2015

  35. Mobility first future internet architecture project (2015). http://mobilityfirst.winlab.rutgers.edu. Accessed 1 June 2015

  36. NEBULA project (2015). http://nebula.cis.upenn.edu. Accessed 1 June 2015

  37. Expressive internet architecture project (2015). http://www.ce.cmu.edu/~xia. Accessed 1 June 2015

  38. Dubrow A (2015) Moving towards a more robust, secure and agile internet. http://www.nsf.gov/news/, Press Release 14-065. Accessed 1 June 2015

  39. FIRE (2015). http://cordis.europa.eu/fp7/ict/fire/overview_en.html. Accessed 1 June 2015

  40. Horizon 2020 (2015). http://ec.europa.eu/programmes/horizon2020/en/area/ict-research-innovation. Accessed 1 June 2015

  41. Digital Agenda for Europe (2015). http://ec.europa.eu/digital-agenda/en/future-internet. Accessed 1 June 2015

  42. Zhang H, Su W (2007) Fundamental research on the architecture of new network—universal network and pervasive services. Acta Electronica Sinica 35(4):593–598

    MathSciNet  Google Scholar 

  43. Dong P, Qin Y, Zhang H (2007) Research on universal network supporting pervasive services. Acta Electronica Sinica 35(4):599–606

    Google Scholar 

  44. Yang D, Zhou H, Zhang H (2007) Research on pervasive services based on universal network. Acta Electronica Sinica 35(4):607–613

    MathSciNet  Google Scholar 

  45. Wu Q, Li Z, Zhou J et al (2014) SOFIA: towards service-oriented information centric networking. IEEE Netw 28(3):12–18

    Article  Google Scholar 

  46. Lan J, Cheng D, Hu Y (2014) Research on reconfigurable information communication basal network architecture. J Commun 35(1):128–139

    Google Scholar 

  47. Zhang H, Luo H (2013) Fundamental research on theories of smart and cooperative networks. Acta Electronica Sinica 41(7):1249–1254

    MathSciNet  Google Scholar 

  48. Gao S, Wang H, Wang K et al (2013) Research on cooperation mechanisms of smart network components. Acta Electronica Sinica 41(7):1261–1267

    Google Scholar 

  49. Su W, Chen J, Zhou H et al (2013) Research on the service mechanisms in smart and cooperative networks. Acta Electronica Sinica 41(7):1255–1260

    Google Scholar 

  50. Xie G, He P, Guan H et al (2011) PEARL: a programmable virtual router platform. IEEE Commun Mag 49(8):71–77

    Article  Google Scholar 

  51. AKARI (2015). http://akari-project.com/. Accessed 1 June 2015

  52. Fuller F, Meyer V, Lewis D (2013) Locator/ID Separation Protocol (LISP). IETF RFC 6830

    Google Scholar 

  53. Li X, Zhou H, Luo H et al (2014) HMS: a hierarchical mapping system for the locator/ID separation network. Comput Inform 32(6):1229–1255

    Google Scholar 

  54. Vogt C (2008) Six/one router: a scalable and backwards compatible solution for provider-independent addressing. ACM MobiArch workshop on mobility in the evolving internet architecture

    Google Scholar 

  55. Nordmark E, Bagnulo M (2009) Shim6: Level 3 multi-homing Shim protocol for IPv6. IETF RFC 5533

    Google Scholar 

  56. Pan J, Paul S, Jain R et al (2008) MILSA: a mobility and multi-homing supporting identifier locator split architecture for next generation Internet. IEEE global communication conference, New Orleans, USA

    Google Scholar 

  57. Menth M, Hartmann M, Kelin D (2010) Global locator, Local locator, and Identifier Split (GLI-Split). Technical Report 470, University of Wrzburg Institute of Computer Science

    Google Scholar 

  58. Moskowitz R, Nikander P (2006) Host identity protocol (HIP) architecture. IETF RFC 4423

    Google Scholar 

  59. Koponen T, Chawla M, Chun B et al (2007) A data-oriented (and Beyond) network architecture. SIGCOMM computer communications, October 2007

    Google Scholar 

  60. Jacobson V, Smetters D, James D. Thornton (2009) Networking named content. In: The 5th international conference on emerging networking experiments and technologies, New York, USA

    Google Scholar 

  61. Ain M, Trossen D, Nikander P et al (2009) D2.3–architecture definition, component descriptions, and requirements. PSIRP 7th FP EU-funded project

    Google Scholar 

  62. Ahlgren B (2010) Second NetInf architecture description. http://www.4ward-project.eu. Accessed 14 June 2015

  63. Zhang L, Estrin D, Jacobson V et al (2010) Named Data Networking (NDN) project. Technical Report, 2010

    Google Scholar 

  64. Fotiou N, Nikander P, Trossen D, Polyzos G (2010) Developing information networking further. International ICST conference on broadband communications, networks, and systems (BROADNETS)

    Google Scholar 

  65. PURSUIT. http://www.fp7-pursuit.eu/PursuitWeb. Accessed 14 June 2015

  66. Scalable and Adaptive Internet Solutions (SAIL). http://www.sail-project.eu. Accessed 14 June 2015

  67. OpenNetInf. http://www.netinf.org/category/opennetinf. Accessed 14 June 2015

  68. Nunes B, Mendonca M, Nguyen X et al (2014) A survey of software-defined networking: past, present, and future of programmable networks. IEEE Commun Surv Tutorials 16(3):1617–1634

    Article  Google Scholar 

  69. Open networking foundation. https://www.opennetworking.org/about. Accessed 14 June 2015

  70. McKeown N, Anderson T, Balakrishnan H et al (2008) OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Comput Commun Rev 38(2):69–74

    Article  Google Scholar 

  71. Open Networking Research Center (ONRC). http://onrc.net. Accessed 14 June 2015

  72. Open networking foundation (2012) OpenFlow Switch Specification Version 1.3.1 (Wire Protocol 0x04)

    Google Scholar 

  73. Campbell A, Katzela I, Miki K, Vicente J (1999) Open signaling for atm, internet and mobile networks. ACM SIGCOMM Comput Commun Rev 29(1):97–108

    Article  Google Scholar 

  74. Tennenhouse D, Wetherall D (2002) Towards an active network architecture. ACM SIGCOMM Comput Commun Rev 37(5):81–94

    Article  Google Scholar 

  75. Rexford J, Greenberg A, Hjalmtysson G et al (2004) Network-wide decision making: toward a wafer-thin control plane. ACM SIGCOMM Comput Commun Rev 37(5):81–97

    Google Scholar 

  76. Enns R (2006) NETCONF Configuration Protocol. RFC 4741

    Google Scholar 

  77. Doria A, Salim J, Haas R et al (2010) Forwarding and Control Element Separation (ForCES) Protocol Specification. RFC 5810

    Google Scholar 

  78. Noble S (2015) Network Function Virtualization or NFV Explained. http://wikibon.org/wiki/v/Network_Function_Virtualization_or_NFV_Explained. Accessed 14 June 2015

  79. Chiosi M, Clarke D et al (2012) Network functions virtualization, White Paper, SDN and openflow world congress, October, 2012

    Google Scholar 

  80. ETSI Industry Specification Group (2014) Network functions virtualization: use cases. http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf. Accessed June 2015

  81. Pate P (2013). NFV and SDN: what’s the difference? https://www.sdxcentral.com/articles/contributed/nfv-and-sdn-whats-the-difference/2013/03. Accessed June 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongke Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, H., Su, W., Quan, W. (2016). Introduction. In: Smart Collaborative Identifier Network. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49143-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49143-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49141-6

  • Online ISBN: 978-3-662-49143-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics