Skip to main content

Optical Tools for Single-Cell Manipulation and Analysis

  • Chapter
  • First Online:
Essentials of Single-Cell Analysis

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

Experiments on individual cells require a range of extremely precise tools to permit their selection, manipulation, stimulation and analysis. This is further complicated by the cells’ sensitivity to their environment, meaning that such tools must also be very gentle (or at least very localised) to minimise the generation of artefacts. Optical tools provide ideal performance in a number of such roles, exhibiting high spatial and temporal selectivity while causing minimal non-specific effects. This chapter focuses upon the optical tools that have been developed for these purposes, ranging from optical trapping systems which provide a contact-free technique for the manipulation of micron-scale objects, through to a selection of the different optically mediated cell membrane disruption methods available for lysis and/or delivery of material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bowman RW, Padgett MJ (2013) Optical trapping and binding. Rep Prog Phys 76:026401. doi:10.1088/0034-4885/76/2/026401

    Article  Google Scholar 

  2. Quinto-Su PA, Lai H-H, Yoon HH, Sims CE, Allbritton NL, Venugopalan V (2008) Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging. Lab Chip 8:408–414. doi:10.1039/b715708h

    Article  Google Scholar 

  3. Kremer C, Witte C, Neale SL, Reboud J, Barrett MP, Cooper JM (2014) Shape-Dependent optoelectronic cell lysis. Angew Chem 126:861–865. doi:10.1002/ange.201307751

    Article  Google Scholar 

  4. Arita Y, Ploschner M, Antkowiak M, Gunn-Moore F, Dholakia K (2014) Single cell transfection by laser-induced breakdown of an optically trapped gold nanoparticle. In: Heisterkamp A, Herman PR, Meunier M, Nolte S (eds) Proceedings of SPIE. SPIE, p 897203

    Google Scholar 

  5. Willison KR, Klug DR (2013) Quantitative single cell and single molecule proteomics for clinical studies. Curr Opin Biotechnol 24:745–751. doi:10.1016/j.copbio.2013.06.001

    Article  Google Scholar 

  6. Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135:216–226. doi:10.1016/j.cell.2008.09.050

    Article  Google Scholar 

  7. Godin AG, Lounis B, Cognet L (2014) Super-resolution microscopy approaches for live cell imaging. Biophys J 107:1777–1784. doi:10.1016/j.bpj.2014.08.028

    Article  Google Scholar 

  8. Almén MS, Nordström KJV, Fredriksson R, Schiöth HB (2009) Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol 7:50. doi:10.1186/1741-7007-7-50

    Article  Google Scholar 

  9. Kiviet DJ, Nghe P, Walker N, Boulineau S, Sunderlikova V, Tans SJ (2014) Stochasticity of metabolism and growth at the single-cell level. Nature 514:376–379. doi:10.1038/nature13582

    Article  Google Scholar 

  10. Steptoe PC, Edwards RG (1978) Birth after the reimplantation of a human embryo. Lancet 2:366

    Article  Google Scholar 

  11. Palermo G, Joris H, Derde MP, Camus M, Devroey P, Van Steirteghem A (1993) Sperm characteristics and outcome of human assisted fertilization by subzonal insemination and intracytoplasmic sperm injection. Fertil Steril 59:826–835. doi:10.1071/RD9940085

    Google Scholar 

  12. Zhang Y (2007) Microinjection technique and protocol to single cells. Protoc Exch. doi:10.1038/nprot.2007.487

    Google Scholar 

  13. Neri QV, Lee B, Rosenwaks Z, Machaca K, Palermo GD (2014) Understanding fertilization through intracytoplasmic sperm injection (ICSI). Cell Calcium 55:24–37. doi:10.1016/j.ceca.2013.10.006

    Article  Google Scholar 

  14. Salazar GTA, Wang Y, Young G, Bachman M, Sims CE, Li GP, Allbritton NL (2007) Micropallet arrays for the separation of single, adherent cells. Anal Chem 79:682–687. doi:10.1021/ac0615706

    Google Scholar 

  15. Tsuda Y, Mori O, Funase R, Sawada H, Yamamoto T, Saiki T, Endo T, Yonekura K, Hoshino H, Kawaguchi J (2012) Achievement of IKAROS—Japanese deep space solar sail demonstration mission. Acta Astronaut 82:183–188. doi:10.1016/j.actaastro.2012.03.032

    Article  Google Scholar 

  16. Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24:156–159. doi:10.1103/PhysRevLett.24.156

    Google Scholar 

  17. Ashkin A (1992) Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys J 61:569–582

    Article  Google Scholar 

  18. Williams MC (2002) Optical tweezers: measuring piconewton forces. In: Schwille P (ed) Biophysics Textbook Online. Biophysical Society, Bethesda, pp 1–14

    Google Scholar 

  19. Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787–2809. doi:10.1063/1.1785844

    Article  Google Scholar 

  20. Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787–2809. doi:10.1063/1.1785844

    Article  Google Scholar 

  21. Armitage D, Thackara JL, Eades WD (1989) Photoaddressed liquid crystal spatial light modulators. Appl Opt 28:4763–4771. doi:10.1364/AO.28.004763

    Article  Google Scholar 

  22. Mao CC, Johnson KM, Turner R, Jared D, Doroski D (1992) Applications of binary and analog hydrogenated amorphous-silicon ferroelectric liquid-crystal optically addressed spatial light modulators. Appl Opt 31:3908–3916. doi:10.1364/AO.31.003908

    Article  Google Scholar 

  23. Lanigan PMP, Munro I, Grace EJ, Casey D, Phillips J, Klug DR, Ces O, Neil MAA (2012) Dynamical hologram generation for high speed optical trapping of smart droplet microtools. Biomed Opt Express 3:1609–1619. doi:10.1364/BOE.3.001609

    Article  Google Scholar 

  24. Grieve JA, Ulcinas A, Subramanian S, Gibson GM, Padgett MJ, Carberry DM, Miles MJ (2009) Hands-on with optical tweezers: a multitouch interface for holographic optical trapping. Opt Express 17:3595–3602. doi:10.1364/OE.17.003595

    Article  Google Scholar 

  25. Lee WM, Reece PJ, Marchington RF, Metzger NK, Dholakia K (2007) Construction and calibration of an optical trap on a fluorescence optical microscope. Nat Protoc 2:3226–3238. doi:10.1038/nprot.2007.446

    Article  Google Scholar 

  26. Werner M, Merenda F, Piguet J, Salathé R-P, Vogel H (2011) Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells. Lab Chip 11:2432–2439. doi:10.1039/c1lc20181f

    Article  Google Scholar 

  27. Hu Z, Wang J, Liang J (2004) Manipulation and arrangement of biological and dielectric particles by a lensed fiber probe. Opt Express 12:4123–4128. doi:10.1364/OPEX.12.004123

    Article  Google Scholar 

  28. Mohanty SK, Mohanty KS, Berns MW (2008) Organization of microscale objects using a microfabricated optical fiber. Opt Lett 33:2155–2157. doi:10.1364/OL.33.002155

    Article  Google Scholar 

  29. Liang P-B, Lei J-J, Liu Z-H, Zhang Y, Yuan L-B (2014) A study of multi-trapping of tapered-tip single fiber optical tweezers. Chin Phys B 23:088702. doi:10.1088/1674-1056/23/8/088702

    Article  Google Scholar 

  30. Liu Y, Cheng DK, Sonek GJ, Berns MW, Chapman CF, Tromberg BJ (1995) Evidence for localized cell heating induced by infrared optical tweezers. Biophys J 68:2137–2144. doi:10.1016/S0006-3495(95)80396-6

    Article  Google Scholar 

  31. Ayano S, Wakamoto Y, Yamashita S, Yasuda K (2006) Quantitative measurement of damage caused by 1064-nm wavelength optical trapping of Escherichia coli cells using on-chip single cell cultivation system. Biochem Biophys Res Commun 350:678–684. doi:10.1016/j.bbrc.2006.09.115

    Article  Google Scholar 

  32. Xie C, Chen D, Li Y (2005) Raman sorting and identification of single living micro-organisms with optical tweezers. Opt Lett 30:1800. doi:10.1364/OL.30.001800

    Article  Google Scholar 

  33. Ashkin A, Dziedzic JM (1987) Optical trapping and manipulation of viruses and bacteria. Science 235:1517–1520. doi:10.1126/science.3547653

    Article  Google Scholar 

  34. Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5:491–505. doi:10.1038/NMETH.1218

    Article  Google Scholar 

  35. López-Quesada C, Fontaine A-S, Farré A, Joseph M, Selva J, Egea G, Ludevid MD, Martín-Badosa E, Montes-Usategui M (2014) Artificially-induced organelles are optimal targets for optical trapping experiments in living cells. Biomed Opt Express 5:1993–2008. doi:10.1364/BOE.5.001993

    Article  Google Scholar 

  36. Schroder BW, Johnson BM, Garrity DM, Dasi LP, Krapf D (2014) Force spectroscopy in the bloodstream of live embryonic zebrafish with optical tweezers. In: Frontiers in optics 2014. OSA, Washington, D.C., p FTu1F.5

    Google Scholar 

  37. Simmons RM, Finer JT, Chu S, Spudich JA (1996) Quantitative measurements of force and displacement using an optical trap. Biophys J 70:1813–1822. doi:10.1016/S0006-3495(96)79746-1

    Article  Google Scholar 

  38. Svoboda K, Schmidt CF, Schnapp BJ, Block SM (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature 365:721–727. doi:10.1038/365721a0

    Article  Google Scholar 

  39. Nicholas MP, Rao L, Gennerich A (2014) An improved optical tweezers assay for measuring the force generation of single kinesin molecules. Methods Mol Biol 1136:171–246. doi:10.1007/978-1-4939-0329-0_10

    Article  Google Scholar 

  40. Kato N, Ishijima A, Inaba T, Nomura F, Takeda S, Takiguchi K (2015) Effects of lipid composition and solution conditions on the mechanical properties of membrane vesicles. Membranes (Basel) 5:22–47. doi:10.3390/membranes5010022

    Article  Google Scholar 

  41. Villangca M, Bañas A, Palima D, Glückstad J (2014) Dynamic diffraction-limited light-coupling of 3D-maneuvered wave-guided optical waveguides. Opt Express 22:17880–17889. doi:10.1364/OE.22.017880

    Article  Google Scholar 

  42. Pacoret C, Bowman R, Gibson G, Haliyo S, Carberry D, Bergander A, Régnier S, Padgett M (2009) Touching the microworld with force-feedback optical tweezers. Opt Express 17:10259–10264. doi:10.1364/OE.17.010259

    Article  Google Scholar 

  43. Jordan CT, Guzman ML, Noble M (2006) Cancer stem cells. N Engl J Med 355:1253–1261. doi:10.1056/NEJMra061808

    Article  Google Scholar 

  44. Rucevic M, Hixson D, Josic D (2011) Mammalian plasma membrane proteins as potential biomarkers and drug targets. Electrophoresis 32:1549–1564. doi:10.1002/elps.201100212

    Article  Google Scholar 

  45. Actis P, Maalouf MM, Kim HJ, Lohith A, Vilozny B, Seger RA, Pourmand N (2014) Compartmental genomics in living cells revealed by single-cell nanobiopsy. ACS Nano 8:546–553. doi:10.1021/nn405097u

    Article  Google Scholar 

  46. Schrems A, Phillips J, Casey DR, Wylie D, Novakova M, Sleytr UB, Klug D, Neil MAA, Schuster B, Ces O (2014) The grab-and-drop protocol: a novel strategy for membrane protein isolation and reconstitution from single cells. Analyst 139:3296–3304. doi:10.1039/c4an00059e

    Article  Google Scholar 

  47. Fällman E, Axner O (1997) Design for fully steerable dual-trap optical tweezers. Appl Opt 36:2107–2113. doi:10.1364/AO.36.002107

    Article  Google Scholar 

  48. Molloy JE (1998) Optical chopsticks: digital synthesis of multiple optical traps. In: Wilson L, Tran P (eds) Methods in cell biology. Elsevier B.V., New York pp 205–216

    Google Scholar 

  49. Svelto O (2010) Principles of lasers, 5th edn. Princ lasers. doi:10.1007/978-1-4419-1302-9

    Google Scholar 

  50. Durnin J, Miceli J, Eberly JH (1987) Diffraction-free beams. Phys Rev Lett 58:1499–1501. doi:10.1103/PhysRevLett.58.1499

    Google Scholar 

  51. McGloin D, Dholakia K (2005) Bessel beams: diffraction in a new light. Contemp Phys 46:15–28. doi:10.1080/0010751042000275259

    Article  Google Scholar 

  52. Woerdemann M, Alpmann C, Esseling M, Denz C (2013) Advanced optical trapping by complex beam shaping. Laser Photonics Rev 7:839–854. doi:10.1002/lpor.201200058

    Article  Google Scholar 

  53. Brzobohatý O, Karásek V, Šiler M, Chvátal L, Čižmár T, Zemánek P (2013) Experimental demonstration of optical transport, sorting and self-arrangement using a “tractor beam”. Nat Photonics 7:1–5. doi:10.1038/nphoton.2012.332

    Google Scholar 

  54. Overton CE (1899) On the general osmotic properties of the cell, their probable origin, and their significance for physiology. Vierteljahrsschr Naturforsch Ges Zurich 44:88–135

    Google Scholar 

  55. Al-Awqati Q (1999) One hundred years of membrane permeability: does Overton still rule? Nat Cell Biol 1:E201–E202

    Article  Google Scholar 

  56. Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2:48–58. doi:10.1038/nrc706

    Article  Google Scholar 

  57. Samal SK, Dash M, Van Vlierberghe S, Kaplan DL, Chiellini E, van Blitterswijk C, Moroni L, Dubruel P (2012) Cationic polymers and their therapeutic potential. Chem Soc Rev 41:7147–7194. doi:10.1039/c2cs35094g

    Article  Google Scholar 

  58. Kalli C, Teoh WC, Leen E (2014) Introduction of Genes via Sonoporation and Electroporation. In: Grimm S (ed) Advances in experimental medicine and biology anticancer genes. Springer, London, pp 231–254

    Google Scholar 

  59. Stevenson DJ, Gunn-Moore FJ, Campbell P, Dholakia K (2010) Single cell optical transfection. J R Soc Interface 7:863–871. doi:10.1098/rsif.2009.0463

    Article  Google Scholar 

  60. Tsukakoshi M, Kurata S, Nomiya Y, Ikawa Y, Kasuya T (1984) A novel method of DNA transfection by laser microbeam cell surgery. Appl Phys B Photophysics Laser Chem 35:135–140. doi:10.1007/BF00697702

    Article  Google Scholar 

  61. Paterson L, Agate B, Comrie M, Ferguson R, Lake TK, Morris JE, Carruthers AE, Brown CTA, Sibbett W, Bryant PE, Gunn-Moore F, Riches AC, Dholakia K (2005) Photoporation and cell transfection using a violet diode laser. Opt Express 13:595. doi:10.1364/OPEX.13.000595

    Article  Google Scholar 

  62. Franken PA, Hill AE, Peters CW, Weinreich G (1961) Generation of optical harmonics. Phys Rev Lett 7:118–119. doi:10.1103/PhysRevLett.7.118

    Google Scholar 

  63. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76. doi:10.1126/science.2321027

    Article  Google Scholar 

  64. Waleed M, Hwang S-U, Kim J-D, Shabbir I, Shin S-M, Lee Y-G (2013) Single-cell optoporation and transfection using femtosecond laser and optical tweezers. Biomed Opt Express 4:1533–1547. doi:10.1364/BOE.4.001533

    Article  Google Scholar 

  65. Venugopalan V, Guerra A, Nahen K, Vogel A (2002) Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation. Phys Rev Lett 88:078103. doi:10.1103/PhysRevLett.88.078103

  66. Fan Q, Hu W, Ohta AT (2015) Efficient single-cell poration by microsecond laser pulses. Lab Chip 15:581–588. doi:10.1039/C4LC00943F

    Google Scholar 

  67. Wu Y-C, Wu T-H, Clemens DL, Lee B-Y, Wen X, Horwitz MA, Teitell MA, Chiou P-Y (2015) Massively parallel delivery of large cargo into mammalian cells with light pulses. Nat Methods 1–8. doi:10.1038/nmeth.3357

    Google Scholar 

  68. Marchington RF, Arita Y, Tsampoula X, Gunn-Moore FJ, Dholakia K (2010) Optical injection of mammalian cells using a microfluidic platform. Biomed Opt Express 1:527. doi:10.1364/BOE.1.000527

    Google Scholar 

  69. Gu L, Koymen AR, Mohanty SK (2014) Crystalline magnetic carbon nanoparticle assisted photothermal delivery into cells using CW near-infrared laser beam. Sci Rep 4:5106. doi:10.1038/srep05106

  70. Witte C, Kremer C, Chanasakulniyom M, Reboud J, Wilson R, Cooper JM, Neale SL (2014) Spatially selecting a single cell for lysis using light-induced electric fields. Small. doi:10.1002/smll.201400247

    Google Scholar 

  71. Fan Q, Hu W, Ohta AT (2013) Light-induced microbubble poration of localized cells. In: Proceedings annual international conference of the IEEE on Engineering in Medicine and Biology Society (EMBS). IEEE, pp 4482–4485

    Google Scholar 

  72. Casey D, Wylie D, Gallo J, Dent M, Salehi-Reyhani A, Wilson R, Brooks N, Long N, Willison K, Klug D, Neil M, Neale SL, Cooper J, Ces O (2015) A novel, all-optical tool for controllable and non-destructive poration of cells with single-micron resolution. In: Optics in the life sciences. OSA, Washington, D.C., p BW1A.5. doi:10.1364/BODA.2015.BW1A.5

  73. Brattain MG, Fine WD, Khaled FM, Thompson J, Brattain DE (1981) Heterogeneity of malignant cells from a human colonic carcinoma. Cancer Res 41:1751–1756

    Google Scholar 

  74. Pacella CM, Francica G, Di Costanzo GG (2011) Laser ablation for small hepatocellular carcinoma. Radiol Res Pract 2011:595–627. doi:10.1155/2011/595627

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan Casey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Casey, D., Dooley, J. (2016). Optical Tools for Single-Cell Manipulation and Analysis. In: Tseng, FG., Santra, T. (eds) Essentials of Single-Cell Analysis. Series in BioEngineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49118-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49118-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49116-4

  • Online ISBN: 978-3-662-49118-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics