Skip to main content

Continuous Mathematics

  • Chapter
  • First Online:
Boundaries of a Complex World

Part of the book series: Springer Series in Synergetics ((SSSYN))

  • 884 Accesses

Abstract

Besides its essential role in the development of calculus, analysis, geometry, and algebraic geometry, topology has major direct applications and contributions in the study of image reconstruction and recognition, modeling, graphs, and networks, fluid mechanics, protein folding, robotics, and fundamental physics. Topology is the part of mathematics that investigates space from a qualitative point of view, roughly speaking without using the concept of distance. It may seem counter-intuitive to do geometry in a metric-free world, but the habitual dualities small/large, or near/far, etc., are more complicated than they appear because they need a comparison relation with a unit of measurement, and the order relation in the set of positive real numbers. Topological intuition does not need these concepts. It is to geometry what logic is to algebra. In his book on topology, Pavel Alexandrov says [149]: “The specific attraction and in large part the significance of topology lies in the fact that its most important questions and theorems have an immediate intuitive content and thus teach us in a direct way about space which appears as the place in which continuous processes occur.” An example is given in Fig. 4.1, where a mug is smoothly deformed into a zero volume surface, the Klein bottle.

A boundary is that which is an extremity of anything

Euclid

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Ludu, Nonlinear Waves and Solitons on Contours and Closed Surfaces (Springer, Berlin, 2012)

    Book  MATH  Google Scholar 

  2. C. Nash, S. Sen, Topology and Geometry for Physicists (Academic, San Diego, 1983)

    MATH  Google Scholar 

  3. L. Schwartz, Analyse, 2nd edn. (Hermann, Paris, 1970)

    MATH  Google Scholar 

  4. A. Kolmogorov, S. Fomine, Eléments de la théorie des fonctions et de l’analyse fonctionelle (Editions MIR, Moscow, 1974)

    MATH  Google Scholar 

  5. M. Spivak, A Comprehensive Introduction to Differential Geometry (Publish or Perish Inc., Boston, 1970)

    MATH  Google Scholar 

  6. S. Kobayashi, K. Nomizu, Foundations of Differential Geometry (Interscience Publishers, London, 1963)

    MATH  Google Scholar 

  7. N. Steenrod, The Topology of Fibre Bundles (Princeton University Press, Princeton, 1951)

    MATH  Google Scholar 

  8. R. Aris, Vectors, Tensors, and the Basic Equations of Fluid Mechanics (Dover, New York, 1989)

    MATH  Google Scholar 

  9. P. Alexandroff, Elementary Concepts of Topology (Dover, New York, 1961)

    MATH  Google Scholar 

  10. R. Uijlenhoet, M. Steiner, J.A. Smith, J. Hydrometeorol. 4(1), 43–61 (2003)

    Article  ADS  Google Scholar 

  11. A.A. Kosinski, Differential Manifolds (Dover, Mineola, 1993)

    MATH  Google Scholar 

  12. J.W. Milnor, Topology from the Differential Viewpoint (Princeton University Press, Princeton, 1997)

    MATH  Google Scholar 

  13. D. Lovelock, H. Rund, Tensors, Differential Forms, and Variational Principles (Dover, New York, 1989)

    MATH  Google Scholar 

  14. S.G. Rajeev, Geometry of the Motion of Ideal Fluids and Rigid Bodies. Preprint arXiv:0906.0184 (2009)

    Google Scholar 

  15. A. Ludu, J. Nonlinear Math. Phys. 15(2), 151–170 (2008)

    Google Scholar 

  16. H. Luo, T.R. Bewley, J. Comput. Phys. 199, 353–375 (2004)

    Google Scholar 

  17. L.E. Payne, G. Pólya, H.F. Weinberger, J. Math. Phys. 35, 289–298 (1956); M.S. Ashbaugh, Proc. Indian Acad. Sci. Math. Sci. 112, 3–30 (2002)

    Google Scholar 

  18. I. Chavel, Eigenvalues in Riemannian Geometry (Academic, New York, 1984)

    MATH  Google Scholar 

  19. M.S. Ashbaugh, Isoperimetric and universal inequalities for eigenvalues, in Spectral Theory and Geometry, ed. by E.B. Davies, Yu. Safarov. London Mathematical Society Lecture Series, vol. 273 (Cambridge University Press, Cambridge, 1999), pp. 95–139

    Google Scholar 

  20. M.A. Khabou, L. Hermi, M.B.H. Rhouma, Pattern Recogn. 40(1), 141–153 (2007)

    Article  Google Scholar 

  21. M. Kac, Am. Math. Mon. 73, 1–23 (1966)

    Article  Google Scholar 

  22. D. Raviv, R. Kimmel, Int. J. Comput. Vis. 111(1), 1–11 (2014); F. Dornaika, A. Assoum, Y. Ruichek, Graph optimized Laplacian eigenmaps for face recognition, in Proceedings of the SPIE 9406. Intelligent Robots and Computer Vision XXXII: Algorithms and Techniques, 94060E (2015)

    Google Scholar 

  23. H.C.M. Smith, C. Pearce, D.L. Millar, Renew. Energy 40(1), 51–64 (2012)

    Article  Google Scholar 

  24. D. Henry, Perturbation of the Boundary in Boundary-Value Problems of Partial Differential Equations. London Mathematical Society Lecture Notes, vol. 318 (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  25. R. Courant, D. Hilbert, Methods of Mathematical Physics (Interscience, London, 1953); G. Polya, G. Szëgo, Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies, vol. 27 (Princeton University Press, Princeton, 1951)

    Google Scholar 

  26. A. Saeid, B. Azarnavid, M.S. Alhuthali, J. Comput. Appl. Math. 279, 293–305 (2015)

    Google Scholar 

  27. D. Lewis, J. Marsden, R. Montgomery, T. Ratiu, Phys. D 18, 391–404 (1986)

    Article  MathSciNet  Google Scholar 

  28. J.E. Marsden, S. Pekarsky, S. Shkoller, M. West, J. Geom. Phys. 38(3–4), 253–284 (2001)

    Google Scholar 

  29. M. Reuter, F.-E. Wolter, M. Shenton, M. Niethammer, Comput. Aided Des. 41(10), 739–755 (2009)

    Article  Google Scholar 

  30. M. Mortara, M. Spagnuolo, Comput. Graph. 25, 1 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ludu, A. (2016). Continuous Mathematics. In: Boundaries of a Complex World. Springer Series in Synergetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49078-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49078-5_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49076-1

  • Online ISBN: 978-3-662-49078-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics