Skip to main content

Boundaries in Visual Perception and the Arts

  • Chapter
  • First Online:
  • 944 Accesses

Part of the book series: Springer Series in Synergetics ((SSSYN))

Abstract

In this chapter we study several examples and theories from the visual arts in order to analyze the importance of the boundary and frame for these types of artistic creations and perceptions. The main goal of this study is to investigate whether the ‘feeling and perception’ of a visual boundary is more of an artistic emotional effect, or a psychological effect, or whether it simply has a neurological and physiological explanation through the mechanism of visual perception.

Like all walls it was ambiguous, two-faced. What was inside it and what was outside it depended upon which side of it you were on.

Ursula K. Le Guin, The Dispossessed: An Ambiguous Utopia, 1974

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For example, each eye projects onto three of the six layers of the primate lateral geniculate body in a very particular way: each half-retina is mapped three times onto one geniculate body: twice onto the parvicellular layers, and once onto the magnocellular layers [8].

  2. 2.

    Nihil est in intellectu quod non prius in sensu: nothing is in the intellect that was not first in the senses.

  3. 3.

    When we rapidly turn off a smooth musical note generated by an electronic device, we hear a sort of snapping, crackling noise. This short signal contains many more wavelengths than the original note. This is just the mathematical effect of abruptly cutting a smooth harmonic signal. The shorter the train of notes, the more extra wavelengths it includes. If we try to listen to one pure musical note for a very short interval of time, we will actually hear only a crackling, which consists in a pulse of white noise containing almost all wavelengths on top of that note. In Sect. 2.4, we elaborate more on this effect, known as the Fourier uncertainty principle.

References

  1. M.S. Livingstone, Science 290, 1299 (2000); M. Livingstone, D. Hubel, Science 240, 740–749 (1988)

    Article  Google Scholar 

  2. P. Mamassian, Vision Res. 48, 2143–2153 (2008)

    Article  Google Scholar 

  3. S.C. Pont, H.T. Nefs, A.J. van Doorn, M.W.A. Wijntjes, S.F. te Pas, H. de Ridder, J.J. Koenderink, Seeing Perceiving 25(3–4), 339–340 (2012)

    Article  Google Scholar 

  4. R.N. Haber, Am. Sci. 68(4), 370–380 (1980)

    ADS  Google Scholar 

  5. P.H. Nidditch, J. Locke, An Essay Concerning Human Understanding (Oxford University Press, Oxford, 1979); H.H. Grelland, Space-Time, Phenomenology, and the Picture Theory of Language, vol. 167 (2010), pp. 281–290

    Google Scholar 

  6. Ph. Blanchard, J.R. Darwin, D. Volchenkov, Eur. Phys. J. Spec. Top. 184, 1–82 (2010)

    Article  Google Scholar 

  7. A.W. Toga, J.C. Mazziotta, Brain Mapping: The Methods (Academic, London, 2002)

    Google Scholar 

  8. K. Gröchenig, Foundations of Time–Frequency Analysis (Birkhäuser, Boston, 2001)

    Book  MATH  Google Scholar 

  9. G. Azzopardi, N. Petkov, Biol. Cybern. 106(3), 177–189 (2012)

    Article  Google Scholar 

  10. R.E.B. Mruczek, I.S. von Loga, S. Kastner, J. Neurophysiol. 109(12), 2883–2896 (2013)

    Article  Google Scholar 

  11. B. Kamai et al., Am. Astron. Soc. Meet. Abs. 221 (2013); M. Moyer, Sci. Am. 306, 30–37 (2012)

    Google Scholar 

  12. R. Hayman, M.A. Verriotis, A. Jovalekic, A.A. Fenton, K.J. Jeffery, Nat. Neurosci. 14, 1182–1188 (2011)

    Article  Google Scholar 

  13. F. Savelli, J.J. Knierim, Nat. Neurosci. 14, 1102–1103 (2011)

    Article  Google Scholar 

  14. A.D. Ekstrom et al., Nature 425, 184–188 (2003)

    Article  ADS  Google Scholar 

  15. A.D. Ekstrom, Curr. Biol. 24(4), R167–R168 (2014)

    Article  Google Scholar 

  16. M.A. Goodale, Proc. R. Soc. B Biol. Sci. 281(1785), 20140337 (2014)

    Article  Google Scholar 

  17. J. Maldacena, Science 344(6186), 806–807 (2014); J. Nishimura, Prog. Theor. Exp. Phys. 01A101 (2012); C.J. Hogan, Phys. Rev. D 85(6), 064007 (2012); M. Hanada, Y. Hyakutake, G. Ishiki, J. Nishimura, Science 344(6186), 882–885 (2014)

    Google Scholar 

  18. N. Ulanovsky, Curr. Biol. 21(21), R886–R887 (2011)

    Article  Google Scholar 

  19. P. Duro (ed.), The Rhetoric of the Frame (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  20. S.M. Ebenholtz, G.W. Glaser, Percept. Psychophys. 32(2), 134–140 (1982)

    Article  Google Scholar 

  21. J.A. Saunders, B.T. Backus, J. Vis. 6(9), 933–954 (2006)

    Google Scholar 

  22. S. Coren, Psychol. Rev. 79(4), 359–367 (1972)

    Article  Google Scholar 

  23. M.A. Georgeson, G.D. Sullivan, J. Physiol. 252, 627–656 (1975)

    Article  Google Scholar 

  24. W.S. Giesler, J.S. Perry, J. Najemnil, J. Vis. 6, 858–873 (2006)

    Google Scholar 

  25. T. Knapen, M. Rolfs, M. Wexler, P. Cavanagh, J. Vis. 10(1, 8), 1–13 (2010)

    Google Scholar 

  26. F.C. Fortenbaugh, S. Sanghvi, M.A. Silver, L.C. Robertson, J. Vis. 12(2, 19), 1–18 (2012)

    Google Scholar 

  27. A.M. Herbert, G.K. Humphrey, P. Jolicoeur, Can. J. Exp. Psychol. 48(1), 140–148 (1994)

    Article  Google Scholar 

  28. K. Ferrara, S. Park, J. Vis. 13, 9 (2013)

    Article  Google Scholar 

  29. M. Ozawa, Phys. Rev. A 67(4), 042105–042110 (2003)

    Article  ADS  Google Scholar 

  30. R. Paley, N. Wiener, Fourier Transforms in the Complex Domain, vol. XIX (AMS Colloquium Publications, New York, 1934)

    MATH  Google Scholar 

  31. J.M. Chen, J. Smith, J. Wolfe, Science 319, 726 (2008)

    ADS  Google Scholar 

  32. A. Haar, Math. Ann. 69, 331–371 (1910)

    Article  MathSciNet  Google Scholar 

  33. I. Daubechies, Commun. Pure Appl. Math. 41(7), 909–996 (1988)

    Article  MathSciNet  Google Scholar 

  34. J. Morlet, Issues in Acoustic Signal-Image Processing and Recognition (Springer, Berlin, 1983), pp. 233–261

    Book  Google Scholar 

  35. S.G. Mallat, A Wavelet Tour of Signal Processing (Academic, London, 1999)

    MATH  Google Scholar 

  36. S.E. Kelly, M.A. Kon, L.A. Raphael, J. Funct. Anal. 126(1), 102–138 (1994)

    MathSciNet  Google Scholar 

  37. J.G. Daugman, J. Opt. Soc. Am. A 2, 1160–1169 (1985)

    ADS  Google Scholar 

  38. L. Bonnar, F. Gosselin, P.G. Schyns, Perception 31, 683–691 (2002)

    Article  Google Scholar 

  39. J. Intriligator, P. Cavanagh, Cogn. Psychol. 43, 171–216 (2001)

    Article  Google Scholar 

  40. M. Bochner, Solar System & Rest Rooms: Writings and Interviews (1965–2007), pp. 96–101

    Google Scholar 

  41. A. Kranjec, J. Cogn. Neurosci. 25(12), 2015–2024 (2013)

    Google Scholar 

  42. P. Cavanagh, Nature 434, 301–307 (2005); Spat. Vis. 21, 261–270 (2008)

    Article  Google Scholar 

  43. C. Pinhanez, M. Podlaseck, To frame or not to frame: the role and design of frameless displays in ubiquitous applications, in UbiComp, ed. by M. Beigl et al. Lecture Notes in Computer Science, vol. 3660 (Springer, Berlin, 2005), pp. 340–357

    Google Scholar 

  44. B. Sayim, P. Cavanagh, Iperception 2(7), 679 (2011)

    Google Scholar 

  45. W. IJsselsteijn, H. de Ridder, R. Hamberg, D. Bouwhuis, J. Freeman, Displays 18, 207–214 (1998)

    Article  Google Scholar 

  46. R. Allen, Representation, illusion and the cinema, in The Visual Turn: Classical Film Theory and Art History, ed. by A.D. Vacche (Rutgers University Press, New Brunswick, 2003)

    Google Scholar 

  47. T.L. Hubbard, J.L. Hutchinson, J.R. Courteny, Q. J. Exp. Psychol. 63(8), 1467–1494 (2010); S.L. Mullally, H. Intraub, E.A. Maguire, Curr. Biol. 22, 261–268 (2012); P. Chapman, D. Ropar, P. Mitchell, K. Ackroyd, Vis. Cogn. 12(7), 1265–1290 (2005)

    Google Scholar 

  48. S. Lowenstam, Trans. Am. Philos. Assoc. 127, 21–76 (1997)

    Google Scholar 

  49. D. Von Bothmer, Metropol. Museum Art Bull. 31(1), 3–9 (1972)

    Article  Google Scholar 

  50. J. Bazant, Letras Clássicas 8, 11–26 (2004)

    Article  Google Scholar 

  51. T. Grieder, Am. Antiq. 29(4), 442–448 (1964)

    Article  Google Scholar 

  52. G. Ferrari, Class. Antiq. 22, 37–54 (2003)

    Article  Google Scholar 

  53. R.T. Neer, Style and Politics in Athenian Vase-Painting (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  54. J.L. Reinish, Stud. Int. 186(958), 63 (1973)

    Google Scholar 

  55. M. Lyons, J. Budynek, S. Akamatsu, Classifying images of facial expression using a Gabor wavelet representation, in Proceedings of 2nd International Conference on Cognitive Science, Tokyo (1999), pp. 113–118

    Google Scholar 

  56. A.M. Herbert, G.K. Humphrey, P. Jolicoeur, Can. J. Exp. Psychol. 48(1), 140–149 (1994)

    Article  Google Scholar 

  57. P.A. Williams, J.T. Enns, Perception 25, 921–926 (1996)

    Article  Google Scholar 

  58. M. de Montalembert, P. Mamassian, Neuropsychologia 48, 3245–3251 (2010)

    Article  Google Scholar 

  59. S. Kennett, M. Taylor-Clarke, P. Haggard, Curr. Biol. 11(15), 1188–1191 (2001)

    Article  Google Scholar 

  60. S. Grossberg, Percept. Psychophys. 55(1), 48–120 (1994)

    Article  MathSciNet  Google Scholar 

  61. P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett. 59(4), 381–384 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  62. T. Luft, C. Colditz, O. Deussen, ACM Trans. Graph. 25(3), 1206–1213 (2006)

    Article  Google Scholar 

  63. E.R. Kandel, J.H. Schwartz, T.M. Jessell, Principles of Neural Science (McGraw-Hill, New York, 2000), pp. 515–520; T. Heiberg, B. Kriener, T. Tetzlaff, A. Casti, G.T. Einevoll, H.E. Plesser, J. Comput. Neurosci. 35, 359–375 (2013); G. Azzopardi, N. Petkov, Biol. Cybern. 106(3), 177–189 (2012)

    Google Scholar 

  64. B.S. Manjunath, R. Chellappa, IEEE Trans. Neural Netw. 4(1), 96–108 (1993)

    Article  Google Scholar 

  65. H.K. Hartline, Am. J. Physiol. 121, 400–415 (1938)

    Google Scholar 

  66. P. Cavanagh, S. Anstis, Vis. Res. 91, 8–20 (2013)

    Article  Google Scholar 

  67. J. Schramme, Vis. Res. 32(11), 2129–2134 (1992)

    Article  Google Scholar 

  68. E.D. Grunfeld, H. Spitzer, Vis. Res. 35(2), 275–283 (1995)

    Article  Google Scholar 

  69. C. von Campenhausen and J. Schramme: Perception 24 (1995) 695–717

    Article  Google Scholar 

  70. C.E. Benham, Nature 51, 200 (1894)

    Article  ADS  Google Scholar 

  71. C.F. Stromeyer III, R.J.W. Mansfield, Percept. Psychophys. 7(2), 108–114 (1970)

    Article  Google Scholar 

  72. E.V. Vargas, A. Ludu, R. Hustert, P. Gumrich, A.D. Jackson, T. Heimburg, Biophys. Chem. 153(2–3), 159–167 (2011)

    Article  Google Scholar 

  73. T. Hartley, C. Lever, Neuron 82(1), 1–3 (2014)

    Article  Google Scholar 

  74. T. Hartley, C. Lever, N. Burgess, J. O’Keefe, Philos. Trans. R. Soc. B 369(1635), 20120510 (2014)

    Article  Google Scholar 

  75. T.L. Bjerknes, E.I. Moser, M.-B. Moder, Neuron 82(1), 71–78 (2014)

    Article  Google Scholar 

  76. H. Öğmen, M.H. Herzog, Proc. IEEE 98(3), 479–492 (2010)

    Article  Google Scholar 

  77. E. Cartan, C. R. Acad. Sci. Paris 196, 582–586 (1993)

    Google Scholar 

  78. J.D. Mollon, Vis. Neurosci. 23, 297–309 (2006)

    Article  Google Scholar 

  79. A. Gilchrist, S. Delman, A. Jacobsen, Percept. Psychophys. 33(5), 425–436 (1983)

    Article  Google Scholar 

  80. R. Shapley, M.J. Hawken, Vis. Res. 51, 701–717 (2011)

    Article  Google Scholar 

  81. J.F. Iaccino, Left Brain–Right Brain Differences: Inquiries, Evidence, and New Approaches (Psychology Press, East Sussex, 2014)

    Google Scholar 

  82. N.N. Nikolaenko, Acta Neuropsychol. 1(1), 144–158 (2003)

    Google Scholar 

  83. N.N. Nikolaenko, M. Brener, J. Evol. Biochem. Physiol. 39(4), 491–501 (2003)

    Google Scholar 

  84. N.N. Nikolaenko, A.V. Egorov, E.A. Freiman, Behav. Neurol. 10, 49–59 (1997)

    Article  Google Scholar 

  85. P. Almer, Framing the real: frames and processes of framing in René Magritte’s Œuvre, in Framing Borders in Literature and Other Media, ed. by W. Wolf, W. Bernhart (Rodopi B.V., Amsterdam, 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ludu, A. (2016). Boundaries in Visual Perception and the Arts. In: Boundaries of a Complex World. Springer Series in Synergetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49078-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49078-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49076-1

  • Online ISBN: 978-3-662-49078-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics