Skip to main content

Discharges to the Sea

  • Chapter
  • First Online:
Shipping and the Environment

Abstract

In this chapter, various environmental issues from the shipping industry which ends up in the oceans are described. Oil pollution, wastewater, antifouling paint, ballast water and litter are all described in detail. Various sources of oil pollution exist, ranging from large accidents to small continuous leakages from, e.g., propeller shaft bearings. The behaviour of oil when it enters the sea can differ, ultimately affecting the environment. Wastewater from ships is divided into sewage and grey water, and different regulations can affect their characteristics. Fouling on ship hulls affects the drag on the ship, which increases fuel consumption when maintaining a constant speed. The various antifouling paints used today to combat fouling are described herein, and a review of the environmental implications of using these paints is provided. Ballast water contains organisms that can become invasive if released into a new geographical area. Invasive species can entail costs on the order of millions of euros. Finally, litter is discussed in this chapter. Litter is deposited in the ocean via several sources and can affect organisms over long periods of time. Plastic causes the largest litter-related problem because it does not biodegrade; such material only becomes smaller, ultimately reaching a microplastic state. Hence, litter can affect organisms in different ways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IMO. The international convention for the prevention of pollution from Ships (MARPOL), 1983, IMO: London, UK.

    Google Scholar 

  2. Townsin, R. L., The ship hull fouling penalty. Biofouling, 2003. 19: p. 8–15.

    Google Scholar 

  3. Briski, E., Ghabooli, S., Bailey, S. A. & MacIsaac, H. J., Invasions risk posed by macroinvertebrates transported in ship’s ballast tanks. Biological Invasions, 2012. 14(9): p. 1843–1850.

    Google Scholar 

  4. Kingston, P. F., Long-term Environmental Impact of Oil Spills. Spill Science & Technology Bulletin, 2002. 7(1–2): p. 53-61.

    Google Scholar 

  5. Sugiura, K., Ishihara, M., Shimauchi, T. & Harayama, S., Physicochemical properties and biodegradability of crude oil. Environmental Science & Technology, 1997(31): p. 45-51.

    Google Scholar 

  6. Teräväinen, M. J., Pakarinen, J. M. H., Wickström, K. & Vainiotalo, P., Comparison of the Composition of Russian and North Sea Crude Oils and Their Eight Distillation Fractions Studied by Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: The Effect of Suppression. Energy & Fuels, 2007(21): p. 266-273.

    Google Scholar 

  7. Rodrigue, J., Comtois, C. & Slack, B., The Geography of transport systems. 2009, Oxon: Routledge. 352.

    Google Scholar 

  8. Rogowska, J. & Namiesnik, J., Environmental Implications of Oil Spills from Shipping Accidents. Reviews of Environmental Contamination and Toxicology. Vol. 206. 2010, New York: Springer. 95-114.

    Google Scholar 

  9. GESAMP. Reports and studies 75: Estimates of oil entering the marine environment from sea-based activities. 2007, London. p. 83.

    Google Scholar 

  10. Mitchell, R., MacDonald, I. R. & Kvenvolden, K. A., Estimation of total hydrocarbon seepage into the Gulf of Mexico based on satellite remote sensing images. Transactions, American Geophysical Union, 1999(80): p. 49-49.

    Google Scholar 

  11. Farrington, J. F. & McDowell, J. E., Mixing and Water. Oceanus, 2004. 43(1): p. 46-49.

    Google Scholar 

  12. Zhao, H. T. et al., Size distribution and diffuse pollution impacts of PAHs in street dust in urban streams in the Yangtze River Delta. J. Environ. Sci., 2009. 21(2): p. 162-167.

    Google Scholar 

  13. Mascarelli, A., After the oil. Nature, 2010. 467(7311): p. 22-24.

    Google Scholar 

  14. Burgherr, P., In-depth analysis of accidental oil spills from tankers in the context of global spill trends from all sources. Journal of Hazardous Materials, 2007. 140(1-2): p. 245-256.

    Google Scholar 

  15. Feder, H. M. & Blachard, A., The deep benthos of Prince William Sound, Alaska, 16 months after the Exxon Valdez oil spill. Marine Pollution Bulletin, 1998. 36: p. 118-130.

    Google Scholar 

  16. Vietes, D. R., Nieto-Roman, S., Palanca, A., Ferrer, X. & Vences, M., European Atlantic: the hottest oil spill hotspot worldwide. Naturwissenschaften, 2004(91): p. 535-538.

    Google Scholar 

  17. Hassler, B., Accidental versus operational oil spills from shipping in the Baltic Sea: Risk Governance and Management Strategies. Ambio, 2011. 40: p. 170-178.

    Google Scholar 

  18. IMO. MARPOL 73/78 (Consolidated edition 2002). 1978, International Maritime Organization: London, UK.

    Google Scholar 

  19. NRC, Oil in the Sea III:Inputs, Fates, and Effects. 2003, Washington D.C., USA: The National Academies Press.

    Google Scholar 

  20. IMO. ISM Code (International Safety Management Code) and revised guidelines on implementation of the ISM Code. 2010, IMO: London, UK.

    Google Scholar 

  21. IMO. A revised SOLAS chapter V (Safety of Navigation). 2002, IMO: London, UK.

    Google Scholar 

  22. Farrington, J. W., Oil Pollution in the Marine Environment Inputs, Big Spills, Small Spills, and Dribbles. Environment, 2013. 55(6): p. 3-13.

    Google Scholar 

  23. Lindgren, J. F., Evaluating effects of low concentrations of oil in marine benthic communities. Doctor of Philosophy thesis, Chalmers University of Technology, 2015.

    Google Scholar 

  24. ITOPF. Fate of marine oil spills. 2002.

    Google Scholar 

  25. Jernelov, A., The Threats from Oil Spills: Now, Then, and in the Future. Ambio, 2010. 39(5-6): p. 353-366.

    Google Scholar 

  26. Mitchell, R. B., International oil pollution at Sea: Environmental policy and treaty compliance. 1994, Cambridge, USA: MIT press.

    Google Scholar 

  27. HELCOM. Report on shipping accidents in the Baltic Sea area for the year 2008. 2008: Helsinki: HELCOM.

    Google Scholar 

  28. EPA. Understanding oil spills and oil spill response. Emergency response. 1999.

    Google Scholar 

  29. Karakulski, K., Marawski, W. A. & Grzechulska, J., Purification of bilge water by hybrid ultrafiltration and photocatalytic processes. Separation and Purification Technology, 1998(14): p. 163-173.

    Google Scholar 

  30. IMO. MARPOL - How to do it, Manual of the Practical Implications of Ratifying and Implementing MARPOL 73/78. 1993: London, UK.

    Google Scholar 

  31. US Legal, Bevare of the Magic Pipe, in Ship Management International. 2007.

    Google Scholar 

  32. Michel, J. et al., Potentially polluting wrecks in marine waters. International Oil Spill Conference, 2005: p. 40.

    Google Scholar 

  33. SMA. Miljörisker från fartygsvrak [Environmental risks from whipwrecks]. 2011. p. 82.

    Google Scholar 

  34. Hassellöv, I. M., Förstudie om vraksanering [Prestudy on the remediation of shiwrecks]. 2007, Göteborg, Sweden: Alliance for Global Sustainability (AGS).

    Google Scholar 

  35. Landquist, H., Hassellöv, I. M., Rosén, L., Lindgren, J. F. & Dahllöf, I., Evaluating the needs of risk assessment methods of potentially polluting shipwrecks. Journal of environmental management, 2013. 119(0): p. 85-92.

    Google Scholar 

  36. EPA. Alkylatbensin i småbåtsmotorer- analys av miljöfördelar [Alkylate gasoline in leisureboat engines – analysis of advantages for the environment]. 2009.

    Google Scholar 

  37. STA. Båtlivsundersökningen 2010 [The 2010 study of boating]. 2010, Swedish Transport Agency.

    Google Scholar 

  38. Alin, J. & Astnäs, T. Jämförande studie av utombordsmotorers emissioner till vatten [Comparative study of emissions to water from outboard engines] . 2001, Avdelningen för kemisk miljövetenskap, Chalmers Tekniska Högskola, Göteborg.

    Google Scholar 

  39. Gustavsson, T. Update of gasoline consumption and emissions from leisure boats in Sweden 1990-2003 for international reporting. 2005.

    Google Scholar 

  40. NRC. Steering Committee for the Petroleum in the Marine Environment Update, Board on Ocean Science and Police, Ocean Sciences Board, Commission on Physical Sciences, Mathematics, and Resources. Oil in the Sea: Inputs, Fates, and Effects. 1985, National Research Council: Washington DC. p. 273-274.

    Google Scholar 

  41. Fingas, M. & Fieldhouse, B., What causes the formation of water-in-oil emulsions? International Oil Spill Conference, 2001.

    Google Scholar 

  42. Fingas, M. & Fieldhouse, B., Studies of the formation process of water in oil emulsions. Marine Pollution Bulletin, 2003. 47: p. 369-396.

    Google Scholar 

  43. Gong, Y. et al., A review of oil, dispersed oil and sediment interactions in the aquatic environment: Influence on the fate, transport and remediation of oil spills. Marine Pollution Bulletin, 2014. 79(1–2): p. 16-33.

    Google Scholar 

  44. Boehm, P. D. & Page, C. A., Exposure elements in oil spill risk and natural resource damage assessments: A review. Human and Ecological Risk Assessment, 2007. 13: p. 418-448.

    Google Scholar 

  45. Burgess, R., M. Evaluating ecological risk to invertebrate receptors from PAHs in sediments at hazardous waste sites. 2009: Ecological Risk Assessment Support Center, Cincinnati, USA. p. 23.

    Google Scholar 

  46. Piatt, J. F. & Ford, R. G., How many seabirds were killed by the Exxon Valdez oil spill. American Fisheries Society Symposium, 1996. 18: p. 712-719.

    Google Scholar 

  47. Page, C. A., Bonner, J. S., Summer, P. L. & Autenrieth, R. L., Solubility of petroleum hydrocarbons in oil/water systems. Mar Chem, 2000(70): p. 79-87.

    Google Scholar 

  48. Jewett, S. C., Dean, T. A., Smith, R. O. & Blanchard, A., ‘Exxon Valdez’ oil spill: impacts and recovery in the soft-bottom benthic community in and adjacent to eelgrass beds. Mar. Ecol.-Prog. Ser., 1999. 185: p. 59-83.

    Google Scholar 

  49. Xia, Y. & Boufadel, M. C., Beach geomorphic factors for the persistence of subsurface oil from the Exxon Valdez spill in Alaska. Environmental Monitoring Assessment, 2011. 183: p. 5-21.

    Google Scholar 

  50. Cerniglia, C. E., Biodegradation of polycyclic aromatic hydrocarbons. Biodegrad, 1992(3): p. 351-368.

    Google Scholar 

  51. Sims, R. C. & Overcash, M. R., Fate of polynuclear aromatic compounds (PNAs) in soil-plant systems. Residue Rev, 1983(8): p. 1-68.

    Google Scholar 

  52. Fleeger, J. W., Carman, K. R. & Nisbet, R. M., Indirect effects of contaminants in aquatic ecosystems. Science of The Total Environment, 2003. 317: p. 207-233.

    Google Scholar 

  53. Hack, L. A., Tremblay, L. A., Wratten, S. D., Lister, A. & Keesing, V., Benthic meiofauna community composition at polluted and non-polluted sites in New Zealand intertidal environments. Marine Pollution Bulletin, 2007. 54(11): p. 1801-1812.

    Google Scholar 

  54. OECD. Detailed review paper on aquatic arthropodes in life cycle toxicity test with an emphasis on developmental, reproductive and endocrine disruptive effects. 2006: Paris, France. p. 125.

    Google Scholar 

  55. Juhasz, A. L. & Naidu, R., Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo a pyrene. Int. Biodeterior. Biodegrad., 2000. 45(1-2): p. 57-88.

    Google Scholar 

  56. Ã…kerblom, N., Goedkoop, W., Nilsson, T. & Kylin, H., Particle-specific sorption/desorption properties determine test compound fate and bioavailability in toxicity tests with Chironomus riparius - high-resolution studies with Lindane. Environmental Toxicology and Chemistry, 2010. 29(7): p. 1520-1528.

    Google Scholar 

  57. Burns, K. A., Codi, S. & Duke, N. C., Gladstone, Australia field studies: weathering and degradation of hydrocarbons in oiled mangrove and salt marsh sediments with and without the application of an experimental bioremediation protocol. Marine Pollution Bulletin, 2000. 7(41): p. 392-402.

    Google Scholar 

  58. Culbertson, J. B., Valiela, I., Pickart, M., Peacock, E. E. & Reddy, C. M., Long-term consequences of residual petroleum on salt marsh grass. Journal of a applied ecology, 2008(45): p. 1284-1292.

    Google Scholar 

  59. Kirby, M. F. & Law, R. J., Accidental spills at sea- Risk, impact, mitigation and the need for co-ordinated post-incident monitoring. Marine Pollution Bulletin, 2010(60): p. 797-803.

    Google Scholar 

  60. Kasai, Y., Kishira, H. & Harayama, S., Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of armomatic hydrocarbons released in marine environment. Appl. Environ. Microb., 2002. 68: p. 5625-5633.

    Google Scholar 

  61. Van Hamme, J. D., Singh, A. & Ward, O. P., Recent advances in petroleum microbiology. Microbiol. Mol. Biol. R., 2003. 67: p. 503-549.

    Google Scholar 

  62. White, I. C. & Molloy, F. C. Factors that determine the cost of oil spills, in International Oil Spill Conference. 2003.

    Google Scholar 

  63. Etkin, D. S. Estimating cleanup costs for oil spills, in International Oil Spill Conference. 1999.

    Google Scholar 

  64. Etkin, D. S. Worldwide analysis of marine oil spill cleanup cost factors, in Proc 23rd Artic and marine oilspill program technical seminar. 2000.

    Google Scholar 

  65. Liu, X. & Wirtz, K. W., Total oil spill costs and compensations. Maritime Policy & Management, 2006. 33(1): p. 49-60.

    Google Scholar 

  66. Loureiro, M. L., Ribas, A., Lopez, E. & Ojea, E., Estimated costs and admissible claims linked to the Prestige oil spill. Economical Economics, 2006. 59: p. 48-63.

    Google Scholar 

  67. Kontovas, C. A. & Psaraftis, H. N. Marine environment risk assessment: A survey on the disutility cost of oil spills, in 2nd International Symposium on Ship Operations. 2008.

    Google Scholar 

  68. HELCOM, HELCOM recommendation 11/10. Guidelines for capacity calculation of sewage systems on board passenger ships. 1990, Erweko Oy: Finland.

    Google Scholar 

  69. The Ocean Conservancy. Cruise Control. A Report on How Cruise Ships Affects the Marine Environment, 2002.

    Google Scholar 

  70. EPA. Cruise Ship Discharge Assessment Report, 2008.

    Google Scholar 

  71. Glassmeyer, S. T. et al., Transport of Chemical and Microbial Compounds from Known Wastewater Discharges:  Potential for Use as Indicators of Human Fecal Contamination. Environmental Science & Technology, 2005. 39(14): p. 5157-5169.

    Google Scholar 

  72. IMO. Resolution MEPC.159(55). Revised guidelines on implementation of effluent standards and performance tests for sewage treatment plants, adopted on 13 October 2006. 2006, Marine Environment Protection Committee, International Maritime Organisation: London.

    Google Scholar 

  73. Butt, N., The impact of cruise ship generated waste on home ports and ports of call: A study of Southampton. Marine Policy, 2007. 31(5): p. 591-598.

    Google Scholar 

  74. Guilbaud, J., Massé, A., Andrès, Y., Combe, F. & Jaouen, P., Influence of operating conditions on direct nanofiltration of greywaters: Application to laundry water recycling aboard ships. Resources, Conservation and Recycling, 2012. 62(0): p. 64-70.

    Google Scholar 

  75. Derraik, J. G. B., The pollution of the marine environment by plastic debris; a review. Marine Pollution Bulletin, 2002. 44: p. 842-852.

    Google Scholar 

  76. Moore, C. J., Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environmental Research, 2008. 108(2): p. 131-139.

    Google Scholar 

  77. Thompson, R. C., Swan, S. H., Moore, C. J. & vom Saal, F. S., Our plastic age. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009. 364(1526): p. 1973-1976.

    Google Scholar 

  78. STA. Toalettavfall från fritidsbåtar. Frågor och svar. Jämförelser med andra länder [Sewage from leisure boats, Q&A. Comparisons with other contries]. 2012, Swedish Transport Agency,http://www.transportstyrelsen.se/sv/Sjofart/Fritidsbatar/Batlivets-miljofragor/Toalettavfall-fran-fritidsbat/Fragor-och-svar/Jamforelser-med-andra-lander/,last accessed on 20 May 2015.

  79. STA, Föreskrifter om ändring i Transportstyrelsens föreskrifter och allmänna råd (TSFS 2010:96) om åtgärder mot förorening från fartyg [Regulation regarding change in STAs regulations and general advices regarding measures to reduce pollution from ships], TSFS 2012:13. 2012, Swedish Transport Agency.

    Google Scholar 

  80. RIL. Water supply and sewage, Part 1 (In Finnish: Vesihuolto I. 2003, Association of Finish Civil Engineers: Liitto, Helsinki.

    Google Scholar 

  81. Hagy, J.D., Boynton, W.R., Keefe, C.W. & Wood, K.V., Hypoxia in Chesapeake Bay, 1950-2001: Long-term change in relation to nutrient loading and river flow. Estuaries, 2004. 27(4): p. 634–658.

    Google Scholar 

  82. Bernes, C., Change Beneath the Surface. An In-depth Look at Sweden´s Marine Environment. 2005: Swedish Environment Protection Agency.

    Google Scholar 

  83. IMO, Resolution MEPC.227(64), Guidelines On Implementation Of Effluent Standards And Performance Tests For Sewage Treatment Plants, Adopted on 5 October 2012. 2012, Marine Environment Protection Committee, International Maritime Organisation: London.

    Google Scholar 

  84. Office of the Federal Register National Archives and Records Administration, 33 CFR Part 159 - Discharge of Effluents in Certain Alaskan Waters by Cruise Vessel Operations. 2001.

    Google Scholar 

  85. EPA, Vessel general permit for discharges incidental to the normal operation of vessels (VGP). 2013.

    Google Scholar 

  86. European Commission, Commision directive 2012/49/EU of 10 December 2012 amending Annex II to Directive 2006/87/EC of the European Parliament and of the Council laying down technical requirements for inland waterway vessels. 2012.

    Google Scholar 

  87. Dafforn, K. A., Lewis, J. A. & Johnston, E. L., Antifouling strategies: History and regulation, ecological impacts and mitigation. Marine Pollution Bulletin, 2011. 62(3): p. 453-465.

    Google Scholar 

  88. Yebra, D. M., Kiil, S. & Dam-Johansen, K., Antifouling technology - past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress In Organic Coatings, 2004. 50(2): p. 75-104.

    Google Scholar 

  89. Wahl, M., Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar. Ecol. Prog. Ser., 1989. 58: p. 175-189.

    Google Scholar 

  90. Dayton, P. K., Competition, disturbance and community organization: the provision and subsequent utalization of space in a rocky intertidal community. Ecological Monographs, 1971. 41: p. 351-389.

    Google Scholar 

  91. Marshall, C. K. Biofouling - What’s the problem. in Biofouling: problems and solutions. 1994. University of New South Wales, Sydney, Australia.

    Google Scholar 

  92. Anderson, C. D. & Hunter, J. D. NAV2000 Conference Proceedings. 2000. Venice, Italy.

    Google Scholar 

  93. Lewis, A. J., Fouling and fouling protection: A defense perspective. Biofouling: Problems and solutions. 1994, The University of New South Wales, Sydney, pp 39-43.

    Google Scholar 

  94. Voulvoulis, N., Scrimshaw, M. D. & Lester, J. N., Alternative Antifouling Biocides. Applied organometal chemistry, 1999. 13: p. 135-143.

    Google Scholar 

  95. Callow, M. E. & Callow, A. C., Marine biofouling: a sticky problem. Biologist, 2002. 49.

    Google Scholar 

  96. Berntsson, K. & Jonsson, P., Temporal and spatial patterns in recruitment and succession of a temperate marine fouling assemblage: A comparison of static panels and boat hulls during the boating season. Biofouling, 2003(19): p. 187-195.

    Google Scholar 

  97. Blom, S.-E. & Nyholm, K.-G., Settling times of Balanus balanoides (L.), Balanus crenatus Brug., and Balanus improvisus Darwin on the west coast of Sweden. Zool. Bidrag Uppsala, 1961. 33: p. 149-155.

    Google Scholar 

  98. Dahlström, M. Pharmacological agents targeted against barnacles as lead molecules in new antifouling technologies. Ph D thesis, Göteborg University, 2004.

    Google Scholar 

  99. Berntsson, K. J., PR. Lejhall, M. Gatenholm P, Analysis of behavioural rejection of micro-textured surfaces and implications for recruitment by the barnacle Blanus improvisus. J Exp Biol Ecol, 2000(251): p. 59-83.

    Google Scholar 

  100. Lagersson, N. C., The ultrastructure of two types of muscle fibre cells in the cyprid of Balanus amphitrite (Crustacea: Cirripedia). J. mar. biol. Ass. U.K., 2002. 82: p. 573-578.

    Google Scholar 

  101. Dobretsov, S., Dahms, H. U. & Qian, P. Y., Inhibition of biofouling by marine microorganisms and their metabolites. Biofouling, 2006. 22: p. 43-54.

    Google Scholar 

  102. Dreanno, C. et al., An [alpha]2-macroglobulin-like protein is the cue to gregarious settlement of the barnacle Balanus amphitrite. Proceedings Of the National Academy Of Sciences Of the United States Of America, 2006. 103: p. 14396-14401.

    Google Scholar 

  103. Glenner, H. & Høeg, J. T., Scanning electron microscopy of metamorphosis in four species of barnacles (Cirripedia Thoracica Balanomorpha). Mar. Biol., 1993. 117: p. 431-439.

    Google Scholar 

  104. Gollasch, S., The Importance of Ship Hull Fouling as a Vector of Species Introductions into the North Sea. Biofouling, 2002. 18(2): p. 105-121.

    Google Scholar 

  105. Roberts, J. & Tsamenyi, M., International legal options for the control of biofouling on international vessels. Marine Policy, 2008(32): p. 559-569.

    Google Scholar 

  106. IMO, Addressing marine biosafety through global partnerships. 2004, London, UK.

    Google Scholar 

  107. Müller- Steinhagen, H., Heat exchanger fouling: Mitigation and cleaning techniques. 2000, Julienstr. 40, D-45130 Essen, Germany: PUBLICO Publications. 382.

    Google Scholar 

  108. Qian, P. Y., Lau, S. C. K., dahms, H. U., Dobretsov, S. & Harder, T., Marine Biofilms as mediators of Colonaziation by Marine Microorganisms: Implications for Antifouling and Aquaculture. Marine Biotechnology, 2007.

    Google Scholar 

  109. Bernes, C., Organiska Miljögifter [Organic pollutants]. 1995: Naturvårdsverkets förlag: Stockholm, Sweden.

    Google Scholar 

  110. Champ, A. M., A Review of Organotin Regulatory Strategies: Pending Actions, Related Costs and Benefits. Science and the Total Environment, 2000. 258: p. 21-27.

    Google Scholar 

  111. Santillo, D., Johnston, P. & Langston, J. W. Tributyltin (TBT) antifoulants: a tale of ships, snails and imposex. 2001, EU Report.

    Google Scholar 

  112. IMO, The International Convention on the control of Harmful anti-fouling Systems on Ships. 2001, London, UK.

    Google Scholar 

  113. Fent, K., Ecotoxicological effects at contaminated sites. Toxicology, 2004. 205: p. 223-240.

    Google Scholar 

  114. M., S. & W., S. G., Managing the use of Copper-Based antifouling paints. Environmental Management, 2007(39): p. 423-441.

    Google Scholar 

  115. Manzo, S., Buono, S. & Cremisini, C., Predictability of copper, irgarol, and diuron combined effects on sea urchin Paracentrotus lividus. Arch. Environ. Contam. Toxicol., 2008. 54(1): p. 57-68.

    Google Scholar 

  116. Dahl, B. & Blanck, H., Use of sand-living microalgal communities (episammon) in ecotoxicological testing. Marine Ecology Progress Series, 1996. 144: p. 163-173.

    Google Scholar 

  117. Gatidou, G., Thomaidis, N. S. & Zhou, J. L., Fate of Irgarol 1051, diuron and their main metabolites in two UK marine systems after restrictions in antifouling paints. Environ. Int., 2007. 33(1): p. 70-77.

    Google Scholar 

  118. Karlsson, J., Breitholtz, M. & Eklund, B., A practical ranking system to compare toxicity of anti-fouling paints. Marine Pollution Bulletin, 2006(52): p. 1661-1667.

    Google Scholar 

  119. KEMI. Kemiska ämnen i båtbottenfärger– en undersökning av koppar, zink och Irgarol 1051 runt Bullandö marina 2004 [Chemical compounds in antifoungpaints – an investigation of copper, zinc and Irgarol 1051 around Bullandö marina in 2004]. 2006.

    Google Scholar 

  120. Konstantinou, I. K. & Albanis, T. A., Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environ. Int., 2004. 30(2): p. 235-248.

    Google Scholar 

  121. Jakobson, A. H. & Willingham, G. L., Sea-nine antifoulant: an environmentally acceptable alternative to organotin antifoulants. Science and the Total Environment, 2000. 258: p. 103-110.

    Google Scholar 

  122. Gollasch S. & Leppäkoski E., Risk assessment and management scenarios for ballast water mediated species introductions into the Baltic Sea. Aquatic Invasions, 2007. 2(4): p. 313-340.

    Google Scholar 

  123. Gollasch S. et al., Critical review of the IMO international convention on the management of ships ballast water and sediments. Harmful Algae, 2007. 6(4): p. 585-600.

    Google Scholar 

  124. Kideys, A. E., Fall and Rise of the Black Sea Ecosystem. Science, 2002. 297(5586): p. 1482-1484.

    Google Scholar 

  125. O´Neill C.R. Jr. & MacNeill D. B., The Zebra Mussel (Dresissena polymorpha): An Unwelcome North American Invader. 1991: New York Sea Grant Institute.

    Google Scholar 

  126. Ruiz, G. M. et al., Global spread of microorganisms by ships. Nature, 2000. 408(6808): p. 49-50.

    Google Scholar 

  127. Takahashi, C. K., Lourenco, N. G. G. S., Lopes, T. F., Rall, V. L. M. & Lopes, C. A. M., Ballast water: A review of the impact on the world public health. Venom. Anim. Toxins incl. Trop. Dis., 2008. 14(3): p. 393-408.

    Google Scholar 

  128. Hallegraeff, G. M. & Bolch, C. J., Transport of toxic dinoflagellate cysts via ships’ ballast water. Marine Pollution Bulletin, 1991. 22(1): p. 27-30.

    Google Scholar 

  129. IMO, Ballast water management convention and the guidelines for its implementation. 2004, London, UK.

    Google Scholar 

  130. UNEP. Marine litter. An analytical view. 2005, Nairobi, Kenya.

    Google Scholar 

  131. National Geographic. National Geographic Education 2014, http://education.nationalgeographic.com/education/encyclopedia/great-pacific-garbage-patch/?ar_a=1, last accessed on 20 May 2015.

  132. Barnes, D. K. A., Galgani, F., Thompson, R. C. & Barlaz, M., Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B-Biological Sciences, 2009. 364(1526): p. 1985-1998.

    Google Scholar 

  133. Wright, S. L., Thompson, R. C. & Galloway, T. S., The physical impacts of microplastics on marine organisms: A review. Environmental Pollution, 2013. 178(0): p. 483-492.

    Google Scholar 

  134. Noren, F. & Naustvoll, F. Survey of Microscopic Anthropogenic Particles in Skagerrak. 2010, N-Research, Commissioned by Klima- og Forurensiningsdirektoratet.

    Google Scholar 

  135. Mato, Y. et al., Plastic Resin Pellets as a Transport Medium for Toxic Chemicals in the Marine Environment. Environmental Science & Technology, 2001. 35(2): p. 318–324.

    Google Scholar 

  136. Chen, C.-L. & Liu, T.-K., Fill the gap: Developing management strategies to control garbage pollution from fishing vessels. Marine Policy, 2013. 40(0): p. 34-40.

    Google Scholar 

  137. Laist, D., Impacts of Marine Debris: Entanglement of Marine Life in Marine Debris Including a Comprehensive List of Species with Entanglement and Ingestion Records, in Marine Debris, JamesM Coe & DonaldB Rogers, Editors. 1997, Springer New York. p. 99-139.

    Google Scholar 

  138. Ryan, P. G., Connell, A. D. & Gardner, B. D., Plastic ingestion and PCBs in seabirds: Is there a relationship? Marine Pollution Bulletin, 1988. 19(4): p. 174-176.

    Google Scholar 

  139. IMO, Simplified overview of the discharge provisions of the revised MARPOL Annex V. 2013: London, UK.

    Google Scholar 

  140. IMO. Resolution MEPC.83(44). Adopted on 13 March 2000. Guidelines for ensuring the adequacy of port waste reception facilities. 2000: London, UK.

    Google Scholar 

  141. European Commission, Directive 2000/59/EC of the European Parliament and of the Council of 27 November 2000 on port reception facilities for ship-generated waste and cargo residues. Official Journal of the European Communities, 2000. 43. 142. Mouat, J.,  Lozano, R.L.,    Bateson, H. Economic Impacts of Marine Litter. Report KIMO, 2010. Lerwick, UK

    Google Scholar 

  142. Mouat, J., Lozano, R.L., Bateson, H. Economic Impacts of Marine Litter. Report KIMO, 2010. Lerwick, UK

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fredrik Lindgren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lindgren, J.F., Wilewska-Bien, M., Granhag, L., Andersson, K., Eriksson, K.M. (2016). Discharges to the Sea. In: Andersson, K., Brynolf, S., Lindgren, J., Wilewska-Bien, M. (eds) Shipping and the Environment . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49045-7_4

Download citation

Publish with us

Policies and ethics