Skip to main content

Hochspannungsgleichstromübertragung

  • Chapter
  • First Online:
Elektrische Energieversorgung 3
  • 10k Accesses

Zusammenfassung

Hochspannungsgleichstromübertragung ist die Technologie der Wahl für den Transport großer Energiemengen über weite Entfernungen. Dieses Kapitel gibt einen Überblick über Grundschaltungen und Anwendungsaspekte.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Mit LCC -HGÜ werden nur sog. Ölpapier- oder masseimprägnierte (MI-)Kabel verwendet werden. Der Einfluss von XLPE-Kabeln ist aufgrund des Polaritätswechsels bei Leistungsflussumkehr nicht sinnvoll realisierbar.

  2. 2.

    In MMC-Anlagen sind keine besonderen Filtereinrichtungen installiert. Es gibt hier allerdings einige Komponenten, die es in PWM-Anlagen nicht gibt und als Filtereinrichtungen betrachtet werden können. z. B. spezielle Drosseln und Kondensatoren in den Phasen der Umrichter.

  3. 3.

    IB = Jahr der geplanten oder erfolgten Inbetriebsetzung

  4. 4.

    je Pol 2 parallele Kabel

  5. 5.

    AC und DC auf einem Mast

  6. 6.

    NSN = North-Sea-Network

  7. 7.

    Multiterminal-System

Literatur

  1. Kimbark E.D.: Direct Current Transmission, Volume 1, Wiley-Interscience, 1971

    Google Scholar 

  2. Wilheln D., Piwko R. J.: High Voltage Direct Current Handbook, First Edition, EPRI 1994

    Google Scholar 

  3. Sood V.K.: HVDC and FACTS Controllers, Application of Static Converter in Power Systems, Kluwer Acadimic Publishers, 2004

    Google Scholar 

  4. Breuer G.D., et.al.: HVDC Surge Diverters and their Application for Overvoltage Protection on HVDC Schemes", CIGRE Report 33-14, Paris 1972

    Google Scholar 

  5. Käuferle J., Povh D.: Concepts of Overvoltage and Overcurrent Protection of HVDC Converters, CIGRE Report 14-08, Paris 1978

    Google Scholar 

  6. Beringer J., et.al.: Design of Water cooled Thyristor Valve Group for Extension of Manitoba Hydro HVDC System, CIGRE Report 14-05, Paris 1976

    Google Scholar 

  7. Schettler F., Huang H., Christl N.: HVDC Transmission Systems using Voltage Sourced Converters – Design and Applications, IEEE Power Engineering Society Summer Meeting, July 2000

    Google Scholar 

  8. Magg T.G., Mutschler H.D., Nyberg S.; Wasborg J., Thunehed H., Sandberg B.: Caprivi Link HVDC Interconnector: Site selection, geophysical investigations, interference impacts and design of the earth electrodes, CIGRE Session Paper B4-302, Paris, 2010

    Google Scholar 

  9. CIGRE WG B4.46 Report, VSC based HVDC for bulk power transmission – economic aspects and comparison with other AC and DC technologies, 2011

    Google Scholar 

  10. Woodford D.A.: HVDC Transmission, Report Manitoba HVDC Research Centre (hvdc.ca), Winnipeg (1998)

    Google Scholar 

  11. Bahrmann M.P.: Overview of HVDC Transmission, IEEE PES Power Systems Conference and Exposition, Oct 29th – Nov 1st, 2006

    Google Scholar 

  12. Lazaridis L.P.: Economic Comparison of HVAC and HVDC Solutions for Large Offshore Wind Farms under Special Consideration of Reliability, Master Thesis, Royal Institute of Technology, Stockholm, 2005

    Google Scholar 

  13. Bahrman M., Johnson B.K.: The ABCs of HVDC Transmission Technologies, IEEE Power & Energy magazine, pp.32-44, March/April 2007

    Google Scholar 

  14. LeDu A., Taisne J.P., Birret D., Couraud X.: The Sardinia-Corsica-Italy Multiterminal dc Scheme, CIGRE SV 14, Paper 13-8, 1982

    Google Scholar 

  15. Reeve J.: Multiterminal HVDC Power Systems, IEEE T-PAS, Vol. 99, No. 2, March/April 1980

    Google Scholar 

  16. Guide for Planning DC Links Terminating at AC Systems Location Having Low Short-Circuit Capacity – Part 1: AC/DC Interaction Phenomena, CIGRE Brochure No. 68, Paris, June 1992

    Google Scholar 

  17. Reeve J., Chen S.P.: Digital Simulation of a Multiterminal HVDC Transmission System, IEEE T-PAS, Vol. 103, No. 12, December 1984

    Article  Google Scholar 

  18. Ishikawa M., Horiuchi S., Irokawa S., Imai K., Hirose S., Sekiya K.: Simulator Study of Multiterminal HVDC Transmission System without fast Commutation, IEEE T-PWRD, Vol., No. 3, July 1986

    Google Scholar 

  19. Sakurai T., Goto K.: A new Control Method for Multiterminal HVDC Transmission without fast Commutation Systems, IEEE T-PAS, Vol. 102, No. 5, May 1983

    Article  Google Scholar 

  20. Long W.F., Reeve J.: Application Aspects of Multiterminal DC Power Transmission, IEEE T-PWRD, Vol. 5, No. 4, pp. 2084-2098, November 1990

    Google Scholar 

  21. Guide for Planning DC Links Terminating at AC Systems Location Having Low Short-Circuit Capacity – Part 2: Planning Guidelines, CIGRE Brochure No. 115, Paris, September 1997

    Google Scholar 

  22. Arrilaga J.: High Voltage Direct Current Transmission, 2nd Edition, The Institution of Electrical Engineers, 1998

    Google Scholar 

  23. Karlecik-Maier F.: A New Closed Loop Control Method for HVDC Transmission, IEEE T-PWRD, Vol. 11, No. 4, pp. 1955-1960, October 1996

    Google Scholar 

  24. Thepparat P.: Analysis of the Combined and Coordinated Control Method for HVDC Transmission, Shaker Verlag, Aachen, 2010

    Google Scholar 

  25. Ainsworth J.D.: Developments in the Phase-Locked Oscillator Control System for HVDC and other large Convertors, IEE Conference Publication 255 on AC and DC Power Transmission, pp. 98-103, September 1985

    Google Scholar 

  26. Sucena-Paiva J.P., Freris L.L.: Stability of a DC Transmission Link between strong AC Systems, IEE Proc.120 (1973), pp. 1233-1243

    Google Scholar 

  27. Ainsworth J.D.: The Phase-Locked Oscillators – A New Control System for Controlled Static Convertors, IEEE PAS, Vol.120, no.10, pp.1233-1242, October 1973

    Google Scholar 

  28. It’s time to connect – a technical description of HVDC light, ABB Grid Systems - HVDC, Ludvika, Sweden, March 2008

    Google Scholar 

  29. Westerweller T., Friedrich K., Armonies U., Orini A., Parquet D., When, S.: Transbay cable – world’s first HVDC system using multilevel voltage-sourced converter, CIGRE Session Paris, Paper B4-101-2010, August 2010

    Google Scholar 

  30. CIGRE SC B4 Colloquium, Northern European experiences and future needs of HVDC & FACTS applications, Bergen, Norwegen, 10.06. – 12.06.2009

    Google Scholar 

  31. Stern E., Nach J., Schoeniger C., Bartzsch C., Acquaotta G., Bacchini,M., Orini A.: The Neptune Regional Transmission System 500 kV Project, Paper B4-118, CIGRE Session Paris, 2008

    Google Scholar 

  32. Stark G.: Energieübertragung mit HGÜ-Technologie und Projektbeispiele, Beitrag zur ETG-Fachtagung „Transport von elektrischer Energie mit Freileitungen und Kabeln“, ETH Zürich, 2. April 2009

    Google Scholar 

  33. Barberis N.; Todorovic J.; Ackermann T.: Loss evaluation of HVAC and HVDC transmission solutions for large offshore wind farms, Electronic Power Systems Research 76 (2006) 916-927, 2006

    Google Scholar 

  34. HVDC PLUS – Basic and Principle of Operation, Siemens Energy Sector, PTD H 1 M7Re, V1, March 7th, 2008

    Google Scholar 

  35. Adapa, R. (ed.): Advanced HVDC Systems at ±800 kV an Above, Electric Power Research Institute (EPRI) Report 1013857, November 2007

    Google Scholar 

  36. Vancers, I.; Christofersen, D.J.; Leirbukt, A.; Benett, M.G.: A survey of the reliability of HVDC systems throughout the world during 2005-2006, CIGRE Paper B4-119, Paris Session, 2008

    Google Scholar 

  37. Plotzke, O.: Untersuchung des ungestörten magnetischen und elektrischen Felds unter maximaler Last bei einer Nenngleichspannung von ±800 kV unter einer Freileitung, Abschlussbericht A-00468 / 2009, Forschungsgesellschaft für Energie und Umwelttechnologie FGEU mbH, November 2009

    Google Scholar 

  38. Ferrero, G.M.: The Transmission System, Presentation at the World Energy Council – International Forum on the Grand Inga Project, 6-17 March, 2007

    Google Scholar 

  39. Aström, U.; Lescale, V.: Converter Stations for 800 kV HVDC, Proceedings of the International Power System Technology Conference, PowerCon, Chongqing, China, 22-26 October 2006

    Google Scholar 

  40. Sechste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zum Schutz gegen Lärm - TA Lärm) vom 26. August 1998 (GMBl Nr. 26/ 1998 S. 503)

    Google Scholar 

  41. Marten, A.-K.: Operation of meshed high voltage direct current (HVDC) overlay grids - From operational planning to real time operation, Ilmenauer Beiträge zur elektrischen Energiesystem-, Geräteund Anlagentechnik (IBEGA), Band 12, Universitätsverlag Ilmenau, 2015

    Google Scholar 

  42. Marten, A.-K.; Sass, F.; Westermann, D.: Mixed AC/DC OPF using Differential Evolution for Global Minima Identification, PowerTech, Einshoven, 2015

    Google Scholar 

  43. Marten, A.-K.: Marten, A.-K.: Integration der Betriebsführung eines HGÜ-Overlay-Netzes in die Leistungs-Frequenzregelung eines Drehstrom-Verbundnetzes, Ilmenauer Beiträge zur elektrischen Energiesystem-, Geräte- und Anlagentechnik, Vol. 3, Universitätsverlag Ilmenau, ISBN 978-3-86360-038-9, 2012

    Google Scholar 

  44. Frey, K.; Rudion, K.; Christian, J.: Optimal Operation Strategy for VSC HVDC Links within an Interconnected Power System, Cigré Symposium, Lund, 2015

    Google Scholar 

  45. Cigré WG B4.58, “Devices for load flow control and methodologies for direct voltage control in a meshed HVDC grid”

    Google Scholar 

  46. Dragon, J., Schettler, F., Marten, A.-K., et all, “Development of Functional Specifications for HVDC Grid Systems”, in Proc. 11th IET International Conference on AC and DC Transmission (ACDC 2015), Birmingham, United Kingdom, 02/2015

    Google Scholar 

  47. Vrana T. K., Beerten J., Belmans R. and Fosso O. B., “A classification of DC Node Voltage Control Methods for HVDC Grids”, Electric Power System Research, vol. 103, pp. 137-144, 2013

    Article  Google Scholar 

  48. Marten A.-K. and Westermann D., “Power Flow Participation by an Embedded HVDC Grid in an Interconnected Power System”, in Proc. IEEE PES Innovative Smart Grid Technologies Europe, Berlin, Germany, 10/2012

    Google Scholar 

  49. Marten A.-K., Sass F. and Westermann D., “Continuous p-v-characteristic parameterization for multi-terminal HVDC systems”, in IEEE Transactions on Power Delivery, 2016

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Westermann .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Westermann, D. (2018). Hochspannungsgleichstromübertragung. In: Elektrische Energieversorgung 3. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49021-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49021-1_8

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49020-4

  • Online ISBN: 978-3-662-49021-1

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics