Skip to main content

MOEA/D for Energy-Aware Scheduling on Heterogeneous Computing Systems

  • Conference paper
  • First Online:
Bio-Inspired Computing -- Theories and Applications (BIC-TA 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 562))

Included in the following conference series:

  • 1922 Accesses

Abstract

Heterogeneous Computing Systems (HCSs) often consist of a set of heterogeneous processors, and finding a scheduling for a workflow becomes a problem worth considering. The Dynamic Voltage Scaling (DVS) technique, which allows processors to operate at lower voltage to reduce the energy consumption, is widely used on HCSs. However, the technique also cause the loss of executing speed, and it makes the resource allocation a core component of the HCSs. In this paper, those two minimization objectives, the makespan and energy consumption, are considered together. As the heuristic methods have been widely applied in similar field, we adopt a multi-objective evolutionary algorithm based on decomposition (MOEA/D) to solve this scheduling problem. In our experiments, the algorithm shows higher performance in benchmark and the real-world applications than other state-of-art evolutionary algorithms do.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, I., Kwok, Y.K., Wu, M.Y.: Analysis, evaluation, and comparison of algorithms for scheduling task graphs on parallel processors. In: Proceedings of the Second International Symposium on Parallel Architectures, Algorithms, and Networks, pp. 207–213. IEEE (1996)

    Google Scholar 

  2. Bianchini, R., Rajamony, R.: Power and energy management for server systems. Computer 37(11), 68–76 (2004)

    Article  Google Scholar 

  3. Crovella, M., Bianchini, R., LeBlanc, T., Markatos, E., Wisniewski, R.: Using communication-to-computation ratio in parallel program design and performance prediction. In: Proceedings of the Fourth IEEE Symposium on Parallel and Distributed Processing, pp. 238–245. IEEE (1992)

    Google Scholar 

  4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  6. Guzek, M., Pecero, J.E., Dorronsoro, B., Bouvry, P.: Multi-objective evolutionary algorithms for energy-aware scheduling on distributed computing systems. Appl. Soft Comput. 24, 432–446 (2014)

    Article  Google Scholar 

  7. Herbert, S., Marculescu, D.: Analysis of dynamic voltage/frequency scaling in chip-multiprocessors. In: 2007 ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED), pp. 38–43. IEEE (2007)

    Google Scholar 

  8. Huang, Q., Su, S., Li, J., Xu, P., Shuang, K., Huang, X.: Enhanced energy-efficient scheduling for parallel applications in cloud. In: Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid 2012), pp. 781–786. IEEE Computer Society (2012)

    Google Scholar 

  9. Kolodziej, J., Khan, S.U., Xhafa, F.: Genetic algorithms for energy-aware scheduling in computational grids. In: 2011 International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pp. 17–24. IEEE (2011)

    Google Scholar 

  10. Koomey, J.: Growth in Data Center Electricity use 2005 to 2010. A report by Analytical Press, completed at the request of The New York Times (2011)

    Google Scholar 

  11. Song, T., Pan, L., Jiang, K., et al.: Normal forms for some classes of sequential spiking neural P systems. IEEE Trans. NanoBiosci. 12(3), 255–264 (2013)

    Article  Google Scholar 

  12. Lee, Y.C., Zomaya, A.Y.: On effective slack reclamation in task scheduling for energy reduction. JIPS 5(4), 175–186 (2009)

    Google Scholar 

  13. Lee, Y.C., Zomaya, A.Y.: Energy conscious scheduling for distributed computing systems under different operating conditions. IEEE Trans. Parallel Distrib. Syst. 22(8), 1374–1381 (2011)

    Article  Google Scholar 

  14. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

    Article  Google Scholar 

  15. Pecero, J.E., Trystram, D., Zomaya, A.Y.: A new genetic algorithm for scheduling for large communication delays. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 241–252. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Peng, W., Zhang, Q., Li, H.: Comparison between MOEA/D and NSGA-II on the multi-objective travelling salesman problem. In: Goh, C.-K., Ong, Y.-S., Tan, K.C. (eds.) Multi-objective Memetic Algorithms, vol. 171, pp. 309–324. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Song, T., Pan, L., Wang, J., et al.: Normal forms of spiking neural P systems with anti-spikes. IEEE Trans. NanoBiosci. 11(4), 352–359 (2012)

    Article  Google Scholar 

  18. Semeraro, G., Magklis, G., Balasubramonian, R., Albonesi, D.H., Dwarkadas, S., Scott, M.L.: Energy-efficient processor design using multiple clock domains with dynamic voltage and frequency scaling. In: Proceedings of the Eighth International Symposium High-Performance Computer Architecture, pp. 29–40. IEEE (2002)

    Google Scholar 

  19. Tao, F., Feng, Y., Zhang, L., Liao, T.: CLPS-GA: a case library and pareto solution-based hybrid genetic algorithm for energy-aware cloud service scheduling. Appl. Soft Comput. 19, 264–279 (2014)

    Article  Google Scholar 

  20. Zeng, X., Xu, L., Liu, X., Pan, L.: On languages generated by spiking neural P systems with weights. Inf. Sci. 278, 423–433 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spikes consumption strategy. IEEE Trans. NanoBiosci. 14(1), 38–44 (2015)

    Article  Google Scholar 

  22. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta Informaticae 71(2), 279–308 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Song, T., Pan, L., Păun, G.: Asynchronous spiking neural P systems with local synchronization. Inf. Sci. 219, 197–207 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, X., Pan, L., Paun, A.: On the universality of axon P systems. IEEE Trans. Neural Netw. Learn. Syst. 26(11), 2816–2829 (2015). doi:10.1109/TNNLS.2015.2396940

    Article  MathSciNet  Google Scholar 

  25. Shi, X., Wang, Z., Deng, C., Song, T., Pan, L., Chen, Z.: A novel bio-sensor based on DNA strand displacement. e108856 (2014)

    Google Scholar 

  26. Wang, X., Miao, Y., Cheng, M.: Finding motifs in DNA sequences using low-dispersion sequences. J. Comput. Biol. 21(4), 320–329 (2014)

    Article  MathSciNet  Google Scholar 

  27. Wang, X., Miao, Y.: GAEM: a hybrid algorithm incorporating GA with EM for planted edited motif finding problem. Curr. Bioinf. 9(5), 463–469 (2014)

    Article  MathSciNet  Google Scholar 

  28. Zeng, X., Zhang, X., Song, T., Pan, L.: Spiking neural P systems with thresholds. Neural Comput. 26(7), 1340–1361 (2014)

    Article  MathSciNet  Google Scholar 

  29. Zeng, X., Zhang, X., Zou, Q.: Integrative approaches for predicting microrna function and prioritizing disease-related microRNA using biological interaction networks. Brief. Bioinf. bbv033 (2015)

    Google Scholar 

  30. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  31. Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. IEEE Congr. Evol. Comput. 1, 203–208 (2009)

    Google Scholar 

  32. Zhang, X., Tian, Y., Jin, Y.: A knee point driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. PP(99), 1 (2014)

    Google Scholar 

  33. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spiking strategy. IEEE Trans. NanoBiosci. 14(4), 465–477 (2015)

    Article  Google Scholar 

  34. Zhang, X., Tian, Y., Cheng, R., Jin, Y.: An efficient approach to nondominated sorting for evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 19(2), 201–213 (2015)

    Article  Google Scholar 

  35. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm (2001)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Natural Science Foundation of Heilongjiang Province (No. F201132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziming Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deng, G., Li, Z., Zhao, Y., Zeng, X. (2015). MOEA/D for Energy-Aware Scheduling on Heterogeneous Computing Systems. In: Gong, M., Linqiang, P., Tao, S., Tang, K., Zhang, X. (eds) Bio-Inspired Computing -- Theories and Applications. BIC-TA 2015. Communications in Computer and Information Science, vol 562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49014-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49014-3_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49013-6

  • Online ISBN: 978-3-662-49014-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics