Inverse Game Theory: Learning Utilities in Succinct Games

  • Volodymyr Kuleshov
  • Okke Schrijvers
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9470)


One of the central questions in game theory deals with predicting the behavior of an agent. Here, we study the inverse of this problem: given the agents’ equilibrium behavior, what are possible utilities that motivate this behavior? We consider this problem in arbitrary normal-form games in which the utilities can be represented by a small number of parameters, such as in graphical, congestion, and network design games. In all such settings, we show how to efficiently, i.e. in polynomial time, determine utilities consistent with a given correlated equilibrium. However, inferring both utilities and structural elements (e.g., the graph within a graphical game) is in general NP-hard. From a theoretical perspective our results show that rationalizing an equilibrium is computationally easier than computing it; from a practical perspective a practitioner can use our algorithms to validate behavioral models.


  1. 1.
    Kalyanaraman, S., Umans, C.: The complexity of rationalizing matchings. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 171–182. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  2. 2.
    Kalyanaraman, S., Umans, C.: The complexity of rationalizing network formation. In: 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, pp. 485–494, October 2009Google Scholar
  3. 3.
    Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, STOC 2006, pp. 71–78. ACM, New York (2006)Google Scholar
  4. 4.
    Chen, X., Deng, X., Teng, S.-H.: Settling the complexity of computing two-player Nash equilibria. J. ACM (JACM) 56(3), 14 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Papadimitriou, C.H., Roughgarden, T.: Computing correlated equilibria in multi-player games. J. ACM 55(3), 14:1–14:29 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Foster, D.P., Vohra, R.V.: Calibrated learning and correlated equilibrium. Games Econ. Behav. 21(12), 40–55 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hart, S., Mas-Colell, A.: A simple adaptive procedure leading to correlated equilibrium. Econometrica 68(5), 1127–1150 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Samuelson, P.A.: Consumption theory in terms of revealed preference. Economica 15(60), 243–253 (1948)CrossRefGoogle Scholar
  9. 9.
    Afriat, S.N.: The construction of utility functions from expenditure data. Int. Econ. Rev. 8(1), 67–77 (1967)CrossRefzbMATHGoogle Scholar
  10. 10.
    Varian, H.R.: The nonparametric approach to demand analysis. Econometrica 50(4), 945–973 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Varian, H.R.: Revealed preference. In: Samuelsonian Economics and the Twenty-First Century (2006)Google Scholar
  12. 12.
    Nekipelov, D., Syrgkanis, V., Tardos, E.: Econometrics for learning agents. In: Proceedings of the Sixteenth ACM Conference on Economics and Computation, EC 2015, pp. 1–18. ACM, New York (2015)Google Scholar
  13. 13.
    Bresnahan, T.F., Reiss, P.C.: Empirical models of discrete games. J. Econometrics 48(1), 57–81 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lise, W.: Estimating a game theoretic model. Comput. Econ. 18(2), 141–157 (2001)CrossRefzbMATHGoogle Scholar
  15. 15.
    Bajari, P., Hong, H., Ryan, S.P.: Identification and estimation of a discrete game of complete information. Econometrica 78(5), 1529–1568 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ng, A.Y., Russell, S.: Algorithms for inverse reinforcement learning. In: Proceedings of the 17th International Conference on Machine Learning, pp. 663–670. Morgan Kaufmann (2000)Google Scholar
  17. 17.
    Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning. In: Proceedings of the Twenty-first International Conference on Machine Learning, ICML 2004, pp. 1–8. ACM, New York (2004)Google Scholar
  18. 18.
    Waugh, K., Ziebart, B.D., Andrew Bagnell, J.: Computational rationalization. The inverse equilibrium problem (2013)Google Scholar
  19. 19.
    Ziebart, B.D., Maas, A., Andrew Bagnell, J., Dey, A.K.: Navigate like a cabbie: probabilistic reasoning from observed context-aware behavior. In: Proceedings of the Ubicomp, pp. 322–331 (2008)Google Scholar
  20. 20.
    Ahuja, R.K., Orlin, J.B.: Inverse optimization. Oper. Res. 49(5), 771–783 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kearns, M., Littman, M.L., Singh, S.: Graphical models for game theory. In: Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, UAI 2001, pp. 253–260. Morgan Kaufmann Publishers Inc, San Francisco (2001)Google Scholar
  22. 22.
    Howson Jr., J.T.: Equilibria of polymatrix games. Manage. Sci. 18(5), 312–318 (1972)Google Scholar
  23. 23.
    Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2(1), 65–67 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Chun, B.-G., Chaudhuri, K., Wee, H., Barreno, M., Papadimitriou, C.H., Kubiatowicz, J.: Selfish caching in distributed systems: a game-theoretic analysis. In: Proceedings of the 23rd Annual ACM Symposium on PODC, PODC 2004, pp. 21–30. ACM, New York (2004)Google Scholar
  25. 25.
    Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. SIAM J. Comput. 38(4), 1602–1623 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Fotakis, D.A., Kontogiannis, S.C., Koutsoupias, E., Mavronicolas, M., Spirakis, P.G.: The structure and complexity of nash equilibria for a selfish routing game. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations