Skip to main content

The VCG Mechanism for Bayesian Scheduling

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9470))

Abstract

We study the problem of scheduling m tasks to n selfish, unrelated machines in order to minimize the makespan, where the execution times are independent random variables, identical across machines. We show that the VCG mechanism, which myopically allocates each task to its best machine, achieves an approximation ratio of \(O\left( \frac{\ln n}{\ln \ln n}\right) \). This improves significantly on the previously best known bound of \(O\left( \frac{m}{n}\right) \) for prior-independent mechanisms, given by Chawla et al. [STOC’13] under the additional assumption of Monotone Hazard Rate (MHR) distributions. Although we demonstrate that this is in general tight, if we do maintain the MHR assumption, then we get improved, (small) constant bounds for \(m\ge n\ln n\) i.i.d. tasks, while we also identify a sufficient condition on the distribution that yields a constant approximation ratio regardless of the number of tasks.

Supported by ERC Advanced Grant 321171 (ALGAME) and EPSRC grant EP/M008118/1. A full version of this paper can be found in [16].

Y. Giannakopoulos—A significant part of this work was carried out while the first author was a PhD student at the University of Oxford.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    Assume you run VCG on the first set of machines plus a dummy machine with processing time \(\beta \) on all tasks. The case where a task has processing time equal to \(\beta \) can be ignored without loss of generality for the case of continuous distributions.

  2. 2.

    We note here that for continuous distributions, such events of ties occurs with zero probability.

  3. 3.

    Here we use the following form, with \(\beta =1+\sqrt{5}\): for any \(\beta >0\), \(\mathrm {Pr}\left[ X\ge (1+\beta )\mu \right] \le e^{-\frac{\beta ^2}{2+\beta }\mu }\) for any binomial random variable with mean \(\mu \).

References

  1. Archer, A., Tardos, É.: Truthful mechanisms for one-parameter agents. In: FOCS, pp. 482–491 (2001)

    Google Scholar 

  2. Ashlagi, I., Dobzinski, S., Lavi, R.: Optimal lower bounds for anonymous scheduling mechanisms. Math. Oper. Res. 37(2), 244–258 (2012)

    Article  MathSciNet  Google Scholar 

  3. Aven, T.: Upper (lower) bounds on the mean of the maximum (minimum) of a number of random variables. J. Appl. Probab. 22(3), 723–728 (1985)

    Article  MathSciNet  Google Scholar 

  4. Barlow, R.E., Marshall, A.W., Proschan, F.: Properties of probability distributions with monotone hazard rate. Ann. Math. Stat. 34(2), 375–389 (1963)

    Article  MathSciNet  Google Scholar 

  5. Berenbrink, P., Friedetzky, T., Hu, Z., Martin, R.: On weighted balls-into-bins games. Theor. Comput. Sci. 409(3), 511–520 (2008)

    Article  MathSciNet  Google Scholar 

  6. Chawla, S., Immorlica, N., Lucier, B.: On the limits of black-box reductions in mechanism design. In: STOC, pp. 435–448 (2012)

    Google Scholar 

  7. Chawla, S., Hartline, J.D., Malec, D., Sivan, B.: Prior-independent mechanisms for scheduling. In: STOC, pp. 51–60 (2013)

    Google Scholar 

  8. Christodoulou, G., Kovács, A.: A deterministic truthful PTAS for scheduling related machines. SIAM J. Comput. 42(4), 1572–1595 (2013)

    Article  MathSciNet  Google Scholar 

  9. Christodoulou, G., Koutsoupias, E., Vidali, A.: A lower bound for scheduling mechanisms. Algorithmica 55(4), 729–740 (2009)

    Article  MathSciNet  Google Scholar 

  10. Clarke, E.H.: Multipart pricing of public goods. Public Choice 11(1), 17–33 (1971)

    Article  Google Scholar 

  11. Daskalakis, C., Weinberg, S.M.: Bayesian truthful mechanisms for job scheduling from bi-criterion approximation algorithms. In: SODA, pp. 1934–1952 (2015)

    Google Scholar 

  12. Devanur, N., Hartline, J., Karlin, A., Nguyen, T.: Prior-independent multi-parameter mechanism design. In: Chen, N., Elkind, E., Koutsoupias, E. (eds.) WINE 2011. LNCS, vol. 7090, pp. 122–133. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Dhangwatnotai, P., Dobzinski, S., Dughmi, S., Roughgarden, T.: Truthful approximation schemes for single-parameter agents. SIAM J. Comput. 40(3), 915–933 (2011)

    Article  MathSciNet  Google Scholar 

  14. Dhangwatnotai, P., Roughgarden, T., Yan, Q.: Revenue maximization with a single sample. Games Econ. Behav. 91, 318–333 (2015)

    Article  MathSciNet  Google Scholar 

  15. Dughmi, S., Roughgarden, T., Sundararajan, M.: Revenue submodularity. Theory Comput. 8(1), 95–119 (2012)

    Article  MathSciNet  Google Scholar 

  16. Giannakopoulos, Y., Kyropoulou, M.: The VCG mechanism for bayesian scheduling. CoRR, abs/1509.07455 (2015). http://arxiv.org/abs/1509.07455

  17. Groves, T.: Incentives in teams. Econometrica 41(4), 617–631 (1973)

    Article  MathSciNet  Google Scholar 

  18. Hall, L.A.: Approximation algorithms for scheduling. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-Hard Problems, pp. 1–45. PWS, Boston (1997)

    Google Scholar 

  19. Hartline, J.D., Roughgarden, T.: Simple versus optimal mechanisms. In: EC, pp. 225–234 (2009)

    Google Scholar 

  20. Koutsoupias, E., Vidali, A.: A lower bound of \(1+\varphi \) for truthful scheduling mechanisms. Algorithmica 66(1), 211–223 (2013)

    Article  MathSciNet  Google Scholar 

  21. Lavi, R., Swamy, C.: Truthful mechanism design for multidimensional scheduling via cycle monotonicity. Games Econ. Behav. 67(1), 99–124 (2009)

    Article  MathSciNet  Google Scholar 

  22. Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling unrelated parallel machines. Math. Program. 46, 259–271 (1990)

    Article  MathSciNet  Google Scholar 

  23. Lu, P.: On 2-player randomized mechanisms for scheduling. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 30–41. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  24. Lu, P., Yu, C.: An improved randomized truthful mechanism for scheduling unrelated machines. In: STACS, pp. 527–538 (2008)

    Google Scholar 

  25. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  26. Nisan, N., Ronen, A.: Algorithmic mechanism design. Games Econ. Behav. 35(1/2), 166–196 (2001)

    Article  MathSciNet  Google Scholar 

  27. Nisan, N., Ronen, A.: Computationally feasible VCG mechanisms. J. Artif. Int. Res. 29(1), 19–47 (2007)

    MathSciNet  Google Scholar 

  28. Raab, M., Steger, A.: “Balls into Bins” — a simple and tight analysis. In: Luby, M., Rolim, J.D.P., Serna, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 159–170. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  29. Roughgarden, T., Talgam-Cohen, I., Yan, Q.: Supply-limiting mechanisms. In: EC, pp. 844–861 (2012)

    Google Scholar 

  30. Sivan, B.: Prior Robust Optimization. Ph.D. thesis, University of Wisconsin-Madison (2013)

    Google Scholar 

  31. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. J. Finance 16(1), 8–37 (1961)

    Article  MathSciNet  Google Scholar 

  32. Yu, C.: Truthful mechanisms for two-range-values variant of unrelated scheduling. Theor. Comput. Sci. 410(21–23), 2196–2206 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Kyropoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giannakopoulos, Y., Kyropoulou, M. (2015). The VCG Mechanism for Bayesian Scheduling. In: Markakis, E., Schäfer, G. (eds) Web and Internet Economics. WINE 2015. Lecture Notes in Computer Science(), vol 9470. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48995-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48995-6_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48994-9

  • Online ISBN: 978-3-662-48995-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics