Advertisement

On Stackelberg Strategies in Affine Congestion Games

  • Vittorio Bilò
  • Cosimo Vinci
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9470)

Abstract

We investigate the efficiency of some Stackelberg strategies in congestion games with affine latency functions. A Stackelberg strategy is an algorithm that chooses a subset of players and assigns them a prescribed strategy with the purpose of mitigating the detrimental effect that the selfish behavior of the remaining uncoordinated players may cause to the overall performance of the system. The efficiency of a Stackelberg strategy is measured in terms of the price of anarchy of the pure Nash equilibria they induce. Three Stackelberg strategies, namely Largest Latency First, Cover and Scale, were already considered in the literature and non-tight upper and lower bounds on their price of anarchy were given. We reconsider these strategies and provide the exact bound on the price of anarchy of both Largest Latency First and Cover and a better upper bound on the price of anarchy of Scale.

References

  1. 1.
    Aland, S., Dumrauf, D., Gairing, M., Monien, B., Schoppmann, F.: Exact price of anarchy for polynomial congestion games. SIAM J. Comput. 40(5), 1211–1233 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Awerbuch, B., Azar, Y., Epstein, L.: The price of routing unsplittable flow. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC), pp. 57–66. ACM Press (2005)Google Scholar
  3. 3.
    Bhawalkar, K., Gairing, M., Roughgarden, T.: Weighted congestion games: price of anarchy, universal worst-case examples, and tightness. ACM Trans. Econ. Comput. 2(4), 14 (2014)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bilò, V.: A unifying tool for bounding the quality of non-cooperative solutions in weighted congestion games. In: Erlebach, T., Persiano, G. (eds.) WAOA 2012. LNCS, vol. 7846, pp. 215–228. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  5. 5.
    Caragiannis, I., Flammini, M., Kaklamanis, C., Kanellopoulos, P., Moscardelli, L.: Tight bounds for selfish and greedy load balancing. Algorithmica 61(3), 606–637 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion games. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC), pp. 67–73. ACM Press (2005)Google Scholar
  7. 7.
    Correa, J.R., Stier Moses, N.E.: Stackelberg routing in atomic network games. Technical report DRO-2007-03, Columbia Business School (2007)Google Scholar
  8. 8.
    Fotakis, D.: Stackelberg strategies for atomic congestion games. Theor. Comput. Syst. 47(1), 218–249 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gairing, M., Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: Nash equilibria in discrete routing games with convex latency functions. J. Comput. Syst. Sci. 74(7), 1199–1225 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Karakostas, G., Kolliopoulos, S.: Stackelberg strategies for selfish routing in general multicommodity networks. Algorithmica 53(1), 132–153 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  12. 12.
    Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: A new model for selfish routing. Theoret. Comput. Sci. 406(3), 187–206 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2, 65–67 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Roughgarden, T.: Stackelberg scheduling strategies. SIAM J. Comput. 33(2), 332–350 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Roughgarden, T.: Intrinsic robustness of the price of anarchy. Commun. ACM 55(7), 116–123 (2012)CrossRefGoogle Scholar
  16. 16.
    Suri, S., Tóth, C.D., Zhou, Y.: Selfish load balancing and atomic congestion games. Algorithmica 47(1), 79–96 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Swamy, C.: The effectiveness of Stackelberg strategies and tolls for network congestion games. ACM Trans. Algorithms 8(4), 36 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Department of Mathematics and Physics “Ennio De Giorgi”University of SalentoLecceItaly
  2. 2.Gran Sasso Science InstituteL’AquilaItaly

Personalised recommendations