Advertisement

Optical Devices Based on the Attenuated Total Reflection

Chapter
  • 874 Downloads
Part of the Springer Tracts in Modern Physics book series (STMP, volume 266)

Abstract

This chapter introduces several basic optical devices based on the attenuated total reflection, including tunable filter, optical sensors, and electro-optical devices. We mainly focus on the description of optical sensors performance. It is found that the bigger the portion of power that propagates in the sample, the higher the sensitivity will be. Moreover, the sensors based on the GH shift are immune to the power fluctuation in the light source since the GH shift is position encoded. Finally, our experiments to explore the magneto-optical modulation and all-optical modulation in the ferrofluid-filled SMCW are given. The results are contributed to the competition between the optical trapping effect and the Soret effect.

Keywords

Attenuated total reflection Filter Optical sensor Oscillating wave Ferrofluid 

References

  1. 1.
    H.G. Li, Z.Q. Cao, H.F. Lu, Q.S. Shen, Polarization-insensitive narrow band filter with a symmetrical metal-cladding optical waveguide. Chin. Phys. Lett. 23, 643 (2006)CrossRefADSGoogle Scholar
  2. 2.
    H.F. Lu, Z.Q. Cao, H.G. Li, Q.S. Shen, X.X. Deng, Polarization-independent and tunable comb filter based on a free-space coupling technique. Opt. Lett. 31, 386 (2006)CrossRefADSGoogle Scholar
  3. 3.
    C. Nylander, B. Liedberg, T. Lind, Gas detection by means of surface plasmon resonance. Sens. Actuators 3, 79 (1982)CrossRefGoogle Scholar
  4. 4.
    J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review. Sens. Actuators, B 54, 3 (1999)CrossRefGoogle Scholar
  5. 5.
    X.D. Hoa, A.G. Kirk, M. Tabrizian, Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosens. Bioelectron. 23, 151 (2007)CrossRefGoogle Scholar
  6. 6.
    T. Okamoto, M. Yamamoto, I. Yamaguchi, Optical waveguide absorption sensor using a single coupling prism. J. Opt. Soc. Am. A 17, 1880 (2000)CrossRefADSGoogle Scholar
  7. 7.
    R. Horvath, H.C. Pedersen, N. Skivesen, D. Selmeczi, N.B. Larsen, Monitoring of living cell attachment of spreading using reverse symmetry waveguide sensing. Appl. Phys. Lett. 86, 071101 (2005)CrossRefADSGoogle Scholar
  8. 8.
    R. Horvath, H.C. Pedersen, N.B. Larsen, Demonstration of reverse symmetry waveguide sensing in aqueous solutions. Appl. Phys. Lett. 81, 2166 (2002)CrossRefADSGoogle Scholar
  9. 9.
    G. Chen, Z.Q. Cao, J.H. Gu, Q.S. Shen, Oscillating wave sensors based on ultrahigh-order modes in symmetrical metal-clad optical waveguides. Appl. Phys. Lett. 89, 081120 (2006)CrossRefADSGoogle Scholar
  10. 10.
    J.H. Gu, G. Chen, Z.Q. Cao, Q.S. Shen, An intensity measurement refractometer based on a symmetric metal-clad waveguide structure. J. Phys. D Appl. Phys. 41, 185105 (2008)CrossRefADSGoogle Scholar
  11. 11.
    Y. Wang, M.Z. Huang, X.Y. Guan, Z.Q. Cao, F. Chen, X.P. Wang, Determination of trace chromium (VI) using a hollow-core metal-cladding optical waveguide sensor. Opt. Express 21, 31130 (2013)CrossRefADSGoogle Scholar
  12. 12.
    M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge, 1999)CrossRefGoogle Scholar
  13. 13.
    Z. Han, L. Qi, G. Shen, W. Liu, Y. Chen, Determination of chromium(VI) by surface plasmon field-enhanced resonance light scattering. Anal. Chem. 79, 5862 (2007)CrossRefGoogle Scholar
  14. 14.
    J. Shi, Z.Q. Cao, J. Zhu, Q.S. Shen, Displacement measurement in real time using the attenuated total reflection technique. Appl. Phys. Lett. 84, 3253 (2004)CrossRefADSGoogle Scholar
  15. 15.
    F. Chen, Z.Q. Cao, Q.S. Shen, X.X. Deng, B.M. Duan, W. Yuan, M.H. Sang, S.Q. Wang, Nanoscale displacement measurement in a variable-air-gap optical waveguide. Appl. Phys. Lett. 88, 161111 (2006)CrossRefADSGoogle Scholar
  16. 16.
    F. Chen, Z.Q. Cao, Q.S. Shen, X.X. Deng, B.M. Duan, W. Yuan, M.H. Sang, S.Q. Wang, Picometer displacement sensing using the ultrahigh-order modes in a submillimeter scale optical waveguide. Opt. Express 13, 10061 (2005)CrossRefADSGoogle Scholar
  17. 17.
    F. Chen, Z.Q. Cao, Q.S. Shen, Y.J. Feng, Optical approach to angular displacement measurement based on attenuated total reflection. Appl. Opt. 44, 5393 (2005)CrossRefADSGoogle Scholar
  18. 18.
    S.Z. Zhang, S. Kiyono, Y. Uda, Nanoradian angle sensor and in situ self-calibration. Appl. Opt. 37, 4154 (1998)CrossRefADSGoogle Scholar
  19. 19.
    L. Chen, Z.Q. Cao, Q.S. Shen, X.X. Deng, F. Ou, Y.J. Feng, Wavelength sensing with subpicometer resolution using ultrahigh order modes. J. Lightw. Technol. 25, 539 (2007)CrossRefADSGoogle Scholar
  20. 20.
    Y. Wang, H.G. Li, Z.Q. Cao, T.Y. Yu, Q.S. Shen, Y. He, Oscillating wave sensor based on the Goos-Hänchen effect. Appl. Phys. Lett. 92, 061117 (2008)CrossRefADSGoogle Scholar
  21. 21.
    T.Y. Yu, H.G. Li, Z.Q. Cao, Y. Wang, Q.S. Shen, Y. He, Oscillating wave displacement sensor using the enhanced Goos-Hanchen effect in a symmetrical metal-cladding optical waveguide. Opt. Lett. 33, 1001 (2008)CrossRefADSGoogle Scholar
  22. 22.
    Y. Wang, X.G. Jiang, Q. Li, Y. Wang, Z.Q. Cao, High-resolution monitoring of wavelength shifts utilizing strong spatial dispersion of guided modes. Appl. Phys. Lett. 101, 061106 (2012)CrossRefADSGoogle Scholar
  23. 23.
    Y. Wang, Z.Q. Cao, T.Y. Yu, H.G. Li, Q.S. Shen, Enhancement of the superprism effect based on the strong dispersion effect of ultrahigh-order modes. Opt. Lett. 33, 1276 (2008)CrossRefADSGoogle Scholar
  24. 24.
    J. Hao, H.G. Li, C. Yin, Z.Q. Cao, 1.5 mm light beam shift arising from 14 pm variation of wavelength. J. Opt. Soc. Am. B 27, 1305 (2010)CrossRefADSGoogle Scholar
  25. 25.
    Y. Jiang, Z.Q. Cao, G. Chen, X.M. Dou, Y.L. Chen, Low voltage electro-optic polymer light modulator using attenuated total internal reflection. Opt. Laser Technol. 33, 417 (2001)CrossRefADSGoogle Scholar
  26. 26.
    Y. Jiang, Z.Q. Cao, X.M. Dou, Mechanism of a variable optical attenuator based on guided wave resonance. Chin. Phys. Lett. 18, 1288 (2001)MathSciNetCrossRefADSGoogle Scholar
  27. 27.
    X.X. Deng, X. Zheng, Z.Q. Cao, Q.S. Shen, H.G. Li, Fast speed electro-optic polymer variable optical attenuator based on cascaded attenuated-total-reflection technique. Appl. Phys. Lett. 90, 151124 (2007)CrossRefADSGoogle Scholar
  28. 28.
    Y. Wang, Z.Q. Cao, H.G. Li, Q.S. Shen, W. Yuan, P.P. Xiao, Tunable polarization beam splitting based on a symmetrical metal-cladding waveguide structure. Opt. Express 17, 13309 (2009)CrossRefADSGoogle Scholar
  29. 29.
    Y. Wang, Z.Q. Cao, H.G. Li, J. Hao, T.Y. Yu, Q.S. Shen, Electric control of spatial beam position based on the Goos-Hänchen shift. Appl. Phys. Lett. 93, 091103 (2008)CrossRefADSGoogle Scholar
  30. 30.
    H.C. Yang, I.J. Jang, H.E. Horng, J.M. Wu, Y.C. Chiou, C.Y. Hong, Pattern formation in microdrops of magnetic fluids. J. Magn. Magn. Mater. 201, 313 (1999)CrossRefADSGoogle Scholar
  31. 31.
    C.Y. Hong, Field-induced structural anisotropy in magnetic fluids. J. Appl. Phys. 85, 5962 (1999)CrossRefADSGoogle Scholar
  32. 32.
    C.Y. Hong, H.E. Horng, F.C. Kuo, S.Y. Yang, H.C. Yang, J.M. Wu, Evidence of multiple states of ordered structures and a phase transition in magnetic fluid films. Appl. Phys. Lett. 75, 2196 (1999)CrossRefADSGoogle Scholar
  33. 33.
    S. Taketomi, S. Ogawa, H. Miyajima, S. Chikazumi, Magnetic birefringence and dichroism in magnetic fluid. IEEE Trans. Magn. 4, 384 (1989)CrossRefGoogle Scholar
  34. 34.
    H.E. Horng, C.Y. Hong, S.L. Lee, C.H. Ho, S.Y. Yang, H.C. Yang, Magnetochromatics resulted from optical gratings of magnetic fluid films subjected to perpendicular magnetic fields. J. Appl. Phys. 88, 5904 (2000)CrossRefADSGoogle Scholar
  35. 35.
    X. Li, H. Ding, All-fiber magnetic-field sensor based on microfiber knot resonator and magnetic fluid. Opt. Lett. 37, 5187 (2012)CrossRefADSGoogle Scholar
  36. 36.
    T. Liu, X. Chen, Z. Di, J. Zhang, X. Li, J. Chen, Tunable magneto-optical wavelength filter of long-period fiber grating with magnetic fluids. Appl. Phys. Lett. 91, 121116 (2007)CrossRefADSGoogle Scholar
  37. 37.
    K.C. Neuman, S.M. Block, Optical trapping. Rev. Sci. Instrum. 75, 2787 (2004)CrossRefADSGoogle Scholar
  38. 38.
    Q. Dai, H. Deng, W. Zhao, J. Liu, L. Wu, S. Lan, A.V. Gopal, All-optical switching mediated by magnetic nanoparticles. Opt. Lett. 35, 97 (2010)CrossRefADSGoogle Scholar
  39. 39.
    N.V. Tabiryan, W. Luo, Soret feedback in thermal diffusion of suspensions. Phys. Rev. E 57, 4431 (1998)CrossRefADSGoogle Scholar
  40. 40.
    J.J. Sun, C. Yin, C.P. Zhu, X.P. Wang, W. Yuan, P.P. Xiao, X.F. Chen, Z.Q. Cao, Observation of magneto-optical effect in extremely dilute ferrofluids under weak magnetic field. J. Opt. Soc. Am. B 29, 769 (2012)CrossRefADSGoogle Scholar
  41. 41.
    H. Horng, C. Chen, K. Fang, S. Yang, J. Chieh, C. Hong, H. Yang, Tunable optical switch using magnetic fluids. Appl. Phys. Lett. 85, 5592 (2004)CrossRefADSGoogle Scholar
  42. 42.
    J. Li, X. Liu, Y. Lin, L. Bai, Q. Li, X. Chen, A. Wang, Field modulation of light transmission through ferrofluid film. Appl. Phys. Lett. 91, 253108 (2007)CrossRefADSGoogle Scholar
  43. 43.
    S. Yang, Y. Hsiao, Y. Huang, H. Horng, C. Hong, H. Yang, Retarded response of the optical transmittance through a magnetic fluid film under switching-on/off external magnetic fields. J. Magn. Magn. Mater. 281, 48 (2004)CrossRefADSGoogle Scholar
  44. 44.
    W. Yuan, C. Yin, P.P. Xiao, X.P. Wang, J.J. Sun, M.H. Sang, X.F. Chen, Z.Q. Cao, Microsecond-scale switching time of magnetic fluids due to the optical trapping effect in waveguide structure. Microfluid. Nanofluid. 11, 781 (2011)CrossRefGoogle Scholar
  45. 45.
    C. Yin, J.J. Sun, X.P. Wang, C.P. Zhu, Q.B. Han, Z.Y. Di, Z.Q. Cao, Modulated reflectivity via a symmetrical metal cladding ferrofluids core waveguide chip. EPL 100, 44001 (2012)CrossRefADSGoogle Scholar
  46. 46.
    X.P. Wang, C. Yin, J.J. Sun, H.G. Li, M.H. Sang, W. Yuan, Z.Q. Cao, M.Z. Huang, All-optically tunable Goos-Hänchen shift owing to the microstructure transition of ferrofluid in a symmetrical metal-cladding waveguide. Appl. Phys. Lett. 103, 151113 (2013)CrossRefADSGoogle Scholar
  47. 47.
    H.L. Dai, F. Ou, Z.Q. Cao, Y.X. Wang, H.G. Li, M.H. Sang, W. Yuan, F. Chen, X.F. Chen, Self-assembly concentric circular grating generated by the patterning trapping of nanoparticles in a micro fluidic chip (in preparation)Google Scholar

Copyright information

© Shanghai Jiao Tong University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.College of Physics and Communication ElectronicsJiangxi Normal UniversityNanchangChina
  2. 2.Hohai UniversityChangzhouChina
  3. 3.Shanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations