Goos–Hänchen Shift

Part of the Springer Tracts in Modern Physics book series (STMP, volume 266)


This chapter introduces the readers to the related issues of the non-specular reflection effects and in particular of the Goos–Hänchen (GH) shift. We first briefly review two causality paradoxes in the optical reflection and their corresponding solutions with the consideration of GH time. Then, we elaborately describe the current work on the theoretical explanation and the experimental enhancement of the GH shift. Finally, we give a unified theory for all non-specular reflection effects.


Non-specular reflection Causality paradox Goos–Hänchen shift Imbert–Fedorov shift Group velocity Stationary-phase approach Enhancement 


  1. 1.
    F. Goos, H. Hänchen, Ein neuer und fundamentaler versuch zur totalreflexion. Ann. Phys. 1, 333 (1947)CrossRefGoogle Scholar
  2. 2.
    K. Artmann, Berechnung der seitenversetzung des totalreflektierten strahles. Ann. Phys. 2, 87 (1948)zbMATHCrossRefGoogle Scholar
  3. 3.
    K.J. Resch, J.S. Lundeen, A.M. Steinberg, Total reflection cannot occur with a negative delay time. J. Quantum Electron. 37, 794 (2001)CrossRefADSGoogle Scholar
  4. 4.
    P. Tournois, Negative group delay times in frustrated Gires-Tournois and Fabry-Perot interferometers. J. Quantum Electron. 33, 519 (1997)CrossRefADSGoogle Scholar
  5. 5.
    P. Tourmois, Apparent causality paradox in frustrated Gires-Tournois interferometers. Opt. Lett. 30, 815 (2005)CrossRefADSGoogle Scholar
  6. 6.
    X.M. Liu, Z.Q. Czo, P.F. Zhu, Q.S. Shen, Time delay associated with total reflection of a plane wave upon plasma mirror. Opt. Express 14, 3588 (2006)CrossRefADSGoogle Scholar
  7. 7.
    X.M. Liu, Z.Q. Cao, P.F. Zhu, Q.S. Shen, Solution to causality paradox upon total reflection in optical planar waveguide. Phys. Rev. E 73, 016615 (2006)CrossRefADSGoogle Scholar
  8. 8.
    C.F. Li, Q. Wang, Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration. Phys. Rev. E 69, 055601 (2004)CrossRefADSGoogle Scholar
  9. 9.
    X.M. Liu, Q.F. Yang, Z. Qiao, T.K. Li, P.F. Zhu, Z.Q. Cao, Physical origin of large positive and negative lateral optical beam shifts in prism-waveguide coupling system. Opt. Commun. 283, 2681 (2010)CrossRefADSGoogle Scholar
  10. 10.
    H.M. Lai, S.W. Chan, Large and negative Goos-Hänchen shift near the Brewster dip on reflection from weakly absorbing medium. Opt. Lett. 27, 680 (2002)CrossRefADSGoogle Scholar
  11. 11.
    X.B. Yin, L. Hesselink, Z.W. Liu, N. Fang, X. Zhang, Large positive and negative lateral optical beam displacement due to surface plasmon resonance. Appl. Phys. Lett. 85, 372 (2004)CrossRefADSGoogle Scholar
  12. 12.
    X.B. Liu, Z.Q. Cao, P.F. Zhu, Q.S. Shen, X.M. Liu, Large positive and negative lateral optical beam shift in prism-waveguide coupling system. Phys. Rev. E 73, 056617 (2006)CrossRefADSGoogle Scholar
  13. 13.
    L. Chen, Z. Cao, F. Ou, H. Li, Q. Shen, H. Qiao, Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides. Opt. Lett. 32, 1432 (2007)CrossRefADSGoogle Scholar
  14. 14.
    J. Hao, H. Li, C. Yin, Z. Cao, 1.5 mm light beam shift arising from 14 pm variation of wavelength. J. Opt. Soc. Am. B 27, 1305 (2010)CrossRefADSGoogle Scholar
  15. 15.
    W. Nasalski, T. Tamir, L. Lin, Displacement of the intensity peak in narrow beams reflected at a dielectric interface. J. Opt. Soc. Am. A 5, 132 (1988)CrossRefADSGoogle Scholar
  16. 16.
    A. Aiello, M. Merano, J.P. Woerdman, Duality between spatial and angular shift in optical reflection. Phys. Rev. A 80, 061801 (2009)CrossRefADSGoogle Scholar
  17. 17.
    M.A. Player, Angular momentum balance and transverse shifts on reflection of light. J. Phys. A Math. Gen. 20, 3667 (1987)MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    M. Onoda, S. Murakami, N. Nagaosa, Hall effect of light. Phys. Rev. Lett. 93, 083901 (2004)CrossRefADSGoogle Scholar
  19. 19.
    K. Yu Bliokh, Y.P. Bliokh, Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet. Phys. Rev. Lett. 96, 073903 (2006)CrossRefADSGoogle Scholar
  20. 20.
    O. Hosten, P. Kwiat, Observation of the spin hall effect of light via weak measurement. Science 319, 787 (2008)CrossRefADSGoogle Scholar
  21. 21.
    S. Goswami, M. Pal, A. Nandi, P.K. Panigrahi, N. Ghosh, Simultaneous weak value amplification of angular Goos-Hänchen and Imbert-Fedorov shifts in partial reflection. Opt. Lett. 39, 6229 (2014)CrossRefADSGoogle Scholar
  22. 22.
    C. Leyder, M. Romanelli, JPh Karr, E. Giacobino, T.C.H. Liew, M.M. Glazov, A.V. Kavokin, G. Malpuech, A. Bramati, Observation of the optical spin hall effect. Nat. Phys. 3, 628 (2007)CrossRefGoogle Scholar
  23. 23.
    K.Y. Bliokh, Geometrodynamics of polarized light: barry phase and spin Hall effect in a gradient-index medium. J. Opt. A 11, 094009 (2009)CrossRefADSGoogle Scholar

Copyright information

© Shanghai Jiao Tong University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.College of Physics and Communication ElectronicsJiangxi Normal UniversityNanchangChina
  2. 2.Hohai UniversityChangzhouChina
  3. 3.Shanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations