Skip to main content

Navigating Weighted Regions with Scattered Skinny Tetrahedra

  • Conference paper
  • First Online:
  • 1122 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9472))

Abstract

We propose an algorithm for finding a \((1+\varepsilon )\)-approximate shortest path through a weighted 3D simplicial complex \(\mathcal T\). The weights are integers from the range [1, W] and the vertices have integral coordinates. Let N be the largest vertex coordinate magnitude, and let n be the number of tetrahedra in \(\mathcal T\). Let \(\rho \) be some arbitrary constant. Let \(\kappa \) be the size of the largest connected component of tetrahedra whose aspect ratios exceed \(\rho \). There exists a constant C dependent on \(\rho \) but independent of \(\mathcal T\) such that if \(\kappa \le \frac{1}{C}\log \log n + O(1)\), the running time of our algorithm is polynomial in n, \(1/\varepsilon \) and \(\log (NW)\). If \(\kappa = O(1)\), the running time reduces to \(O(n \varepsilon ^{-O(1)}(\log (NW))^{O(1)})\).

S.-W. Cheng—Supported by Research Grants Council, Hong Kong, China (project no. 611812).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The smallest value of \(\delta (x)\) occurs near the edge-ball centered at the intersection point between uv and the boundary of \(N_u\) or the boundary of \(N_v\).

References

  1. Ahmed, M.: Constrained Shortest Paths in Terrains and Graphs. Ph.D. Thesis, University of Waterloo, Canada (2009)

    Google Scholar 

  2. Aleksandrov, L., Maheshwari, A., Sack, J.-R.: Determining approximate shortest paths on weighted polyhedral surfaces. J. ACM 52, 25–53 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aleksandrov, L., Djidjev, H., Maheshwari, A., Sack, J.-R.: An approximation algorithm for computing shortest paths in weighted 3-d domains. Discrete. Comput. Geom. 50, 124–184 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, J., Han, Y.: Shortest paths on a polyhedron. Int. J. Comput. Geom. Appl. 6, 127–144 (1996)

    Article  MATH  Google Scholar 

  5. Cheng, S.-W., Jin, J.: Approximate shortest descending paths. SIAM J. Comput. 43, 410–428 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheng, S.-W., Jin, J.: Shortest paths on polyhedral surfaces and terrains. In: Proceedings of ACM Sympoisum on Theory of Computing, pp. 373–382 (2014)

    Google Scholar 

  7. Cheng, S.-W., Jin, J., Vigneron, A.: Triangulation refinement and approximate shortest paths in weighted regions. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 1626–1640 (2015)

    Google Scholar 

  8. Cheng, S.-W., Na, H.-S., Vigneron, A., Wang, Y.: Approximate shortest paths in anisotropic regions. SIAM J. Comput. 38, 802–824 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng, S.-W., Na, H.-S., Vigneron, A., Wang, Y.: Querying approximate shortest paths in anisotropic regions. SIAM J. Comput. 39, 1888–1918 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Choi, J., Sellen, J., Yap, C.-K.: Approximate Euclidean shortest path in 3-space. In: Proceedings of the Annual Symposium on Computational Geometry, pp. 41–48 (1994)

    Google Scholar 

  11. Clarkson, K.L.: Approximation algorithms for shortest path motion planning. In: Proceedings of the ACM Symposium on Theory Computing, pp. 56–65 (1987)

    Google Scholar 

  12. Hershberger, J., Subhash, S.: An optimal algorithm for Euclidean shortest paths in the plane. SIAM J. Comput. 28, 2215–2256 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Menke, W.: Geophysical Data Analysis: Discrete Inverse Theory. Academic Press, New York (2012)

    MATH  Google Scholar 

  14. Mitchell, J.S.B., Papadimitrou, C.H.: The weighted region problem: finding shortest paths through a weighted planar subdivision. J. ACM 8, 18–73 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Papadimitriou, C.H.: An algorithm for shortest-path motion in three dimensions. Inf. Process. Lett. 20, 259–263 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Dover, New York (1998)

    MATH  Google Scholar 

  17. Sun, Z., Reif, J.: On finding approximate optimal paths in weighted regions. J. Alg. 58, 1–32 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siu-Wing Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheng, SW., Chiu, MK., Jin, J., Vigneron, A. (2015). Navigating Weighted Regions with Scattered Skinny Tetrahedra. In: Elbassioni, K., Makino, K. (eds) Algorithms and Computation. ISAAC 2015. Lecture Notes in Computer Science(), vol 9472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48971-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48971-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48970-3

  • Online ISBN: 978-3-662-48971-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics