Skip to main content

Minimizing the Maximum Moving Cost of Interval Coverage

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9472))

Abstract

In this paper, we study an interval coverage problem. We are given n intervals of the same length on a line L and a line segment B on L. Each interval has a nonnegative weight. The goal is to move the intervals along L such that every point of B is covered by at least one interval and the maximum moving cost of all intervals is minimized, where the moving cost of each interval is its moving distance times its weight. Algorithms for the “unweighted” version of this problem have been given before. In this paper, we present a first-known algorithm for this weighted version and our algorithm runs in \(O(n^2\log n\log \log n)\) time. The problem has applications in mobile sensor barrier coverage.

H. Wang was supported in part by NSF under Grant CCF-1317143. Part of the work by X. Zhang was carried out during his visit at Utah State University.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    It might be more natural to pick the rightmost sensor of \(S_{i1}\) as \(s_{g(i)}\). In fact, an arbitrary one is sufficient.

References

  1. Andrews, A.M., Wang, H.: Minimizing the aggregate movements for interval coverage. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 28–39. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  2. Bar-Noy, A., Baumer, B.: Average case network lifetime on an interval with adjustable sensing ranges. Algorithmica 72, 148–166 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bar-Noy, A., Rawitz, D., Terlecky, P.: Maximizing barrier coverage lifetime with mobile sensors. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 97–108. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry – Algorithms and Applications, 3rd edn. Springer-Verlag, Berlin (2008)

    MATH  Google Scholar 

  5. Chen, D., Gu, Y., Li, J., Wang, H.: Algorithms on minimizing the maximum sensor movement for barrier coverage of a linear domain. Discrete Comput. Geom. 50, 374–408 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cole, R., Salowe, J., Steiger, W., Szemerédi, E.: An optimal-time algorithm for slope selection. SIAM J. Comput. 18(4), 792–810 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  8. Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L., Opatrny, J., Stacho, L., Urrutia, J., Yazdani, M.: On minimizing the maximum sensor movement for barrier coverage of a line segment. In: Ruiz, P.M., Garcia-Luna-Aceves, J.J. (eds.) ADHOC-NOW 2009. LNCS, vol. 5793, pp. 194–212. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L., Opatrny, J., Stacho, L., Urrutia, J., Yazdani, M.: On minimizing the sum of sensor movements for barrier coverage of a line segment. In: Nikolaidis, I., Wu, K. (eds.) ADHOC-NOW 2010. LNCS, vol. 6288, pp. 29–42. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Fan, H., Li, M., Sun, X., Wan, P., Zhao, Y.: Barrier coverage by sensors with adjustable ranges. ACM Trans. Sens. Netw. 11, 14 (2014)

    Article  Google Scholar 

  11. Megiddo, N.: Applying parallel computation algorithms in the design of serial algorithms. J. ACM 30(4), 852–865 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mehrandish, M.: On routing, backbone formation and barrier coverage in wireless Ad Hoc and sensor networks. Ph.D. thesis, Concordia University, Montreal, Quebec, Canada (2011)

    Google Scholar 

  13. Mehrandish, M., Narayanan, L., Opatrny, J.: Minimizing the number of sensors moved on line barriers. In: Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), pp. 653–658 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, H., Zhang, X. (2015). Minimizing the Maximum Moving Cost of Interval Coverage. In: Elbassioni, K., Makino, K. (eds) Algorithms and Computation. ISAAC 2015. Lecture Notes in Computer Science(), vol 9472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48971-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48971-0_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48970-3

  • Online ISBN: 978-3-662-48971-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics