Advertisement

Limb Salvage: Lower Extremity

  • Gerald E. WozasekEmail author
  • Lukas Zak
Chapter

Abstract

Extremity damage in disaster as well as combat situation, particularly of the lower limb, is typically a high-energy trauma with open injury [1, 2]. These dramatic conditions confront surgeons among others with significant human and ethical problems [3]. Hereby treatment of severely injured limbs challenges orthopedic surgeons [4]. It is important that in these extreme situations, only surgical specialists and senior trainees should be deployed and not be used as a training field for junior residents [5].

Keywords

External Fixation Open Fracture Limb Salvage Soft Tissue Injury Distraction Osteogenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gordon WT, Grijalva S, Potter BK. Damage control and austere environment external fixation: techniques for the civilian provider. J Surg Orthop Adv. 2012;21(1):22–31. doi:21-1-1.pdf?T = open_article,50059395.PubMedGoogle Scholar
  2. 2.
    Phalkey R, Reinhardt JD, Marx M. Injury epidemiology after the 2001 Gujarat earthquake in India: a retrospective analysis of injuries treated at a rural hospital in the Kutch district immediately after the disaster. Glob Health Action. 2011;4:7196. doi: 10.3402/gha.v4i0.7196.CrossRefPubMedGoogle Scholar
  3. 3.
    Rigal S. Extremity amputation: how to face challenging problems in a precarious environment. Int Orthop. 2012;36(10):1989–93. doi: 10.1007/s00264-012-1548-z.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Russell WL, Sailors DM, Whittle TB, Fisher Jr DF, Burns RP. Limb salvage versus traumatic amputation. A decision based on a seven-part predictive index. Ann Surg. 1991;213(5):473–80; discussion 480-1.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ryan JM. Natural disasters: the surgeon’s role. Scand J Surg. 2005;94(4):311–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Saleh M, Yang L, Sims M. Limb reconstruction after high energy trauma. Br Med Bull. 1999;55(4):870–84.CrossRefPubMedGoogle Scholar
  7. 7.
    Korompilias AV, Beris AE, Lykissas MG, Vekris MD, Kontogeorgakos VA, Soucacos PN. The mangled extremity and attempt for limb salvage. J Orthop Surg Res. 2009;4:4. doi:1749-799X-4-4.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gustilo RB, Anderson JT. Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones: retrospective and prospective analyses. J Bone Joint Surg Am. 1976;58(4):453–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Gustilo RB, Anderson JT. JSBS classics. Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones. Retrospective and prospective analyses. J Bone Joint Surg Am. 2002;84-A(4):682.CrossRefPubMedGoogle Scholar
  10. 10.
    Helfet DL, Howey T, Sanders R, Johansen K. Limb salvage versus amputation. Preliminary results of the mangled extremity severity score. Clin Orthop Relat Res. 1990;256:80–6.Google Scholar
  11. 11.
    Johansen K, Daines M, Howey T, Helfet D, Hansen Jr ST. Objective criteria accurately predict amputation following lower extremity trauma. J Trauma. 1990;30(5):568–72; discussion 572–3.CrossRefPubMedGoogle Scholar
  12. 12.
    MacKenzie EJ, Bosse MJ, Kellam JF, Burgess AR, Webb LX, Swiontkowski MF, Sanders R, Jones AL, McAndrew MP, Patterson B, McCarthy ML, Rohde CA. Factors influencing the decision to amputate or reconstruct after high-energy lower extremity trauma. J Trauma. 2002;52(4):641–9.PubMedGoogle Scholar
  13. 13.
    WHO. Disaster management guidelines – emergency surgical care in disaster situations. [Internet]. Geneva; 2009 [cited year month date]. Available from: http://www.who.int/surgery/publications/EmergencySurgicalCareinDisasterSituations.pdf.
  14. 14.
    Bhandari M, Adili A, Schemitsch EH. The efficacy of low-pressure lavage with different irrigating solutions to remove adherent bacteria from bone. J Bone Joint Surg Am. 2001;83-A(3):412–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Giannoudis PV, Papakostidis C, Roberts C. A review of the management of open fractures of the tibia and femur. J Bone Joint Surg Br. 2006;88(3):281–9. doi: 10.1302/0301-620X.88B3.16465.CrossRefPubMedGoogle Scholar
  16. 16.
    Gustilo RB, Merkow RL, Templeman D. The management of open fractures. J Bone Joint Surg Am. 1990;72(2):299–304.CrossRefPubMedGoogle Scholar
  17. 17.
    Gross A, Cutright DE, Bhaskar SN. Effectiveness of pulsating water jet lavage in treatment of contaminated crushed wounds. Am J Surg. 1972;124(3):373–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Bhandari M, Schemitsch EH, Adili A, Lachowski RJ, Shaughnessy SG. High and low pressure pulsatile lavage of contaminated tibial fractures: an in vitro study of bacterial adherence and bone damage. J Orthop Trauma. 1999;13(8):526–33.CrossRefPubMedGoogle Scholar
  19. 19.
    Crowley DJ, Kanakaris NK, Giannoudis PV. Irrigation of the wounds in open fractures. J Bone Joint Surg Br. 2007;89(5):580–5. doi: 10.1302/0301-620X.89B5.19286.CrossRefPubMedGoogle Scholar
  20. 20.
    Aucar JA, Hirshberg A. Damage control for vascular injuries. Surg Clin North Am. 1997;77(4):853–62. doi:S0039-6109(05)70589-2.CrossRefPubMedGoogle Scholar
  21. 21.
    Feliciano DV, Moore FA, Moore EE, West MA, Davis JW, Cocanour CS, Kozar RA, McIntyre Jr RC. Evaluation and management of peripheral vascular injury. Part 1. Western Trauma Association/critical decisions in trauma. J Trauma. 2011;70(6):1551–6. doi: 10.1097/TA.0b013e31821b5bdd.CrossRefPubMedGoogle Scholar
  22. 22.
    Fox N, Rajani RR, Bokhari F, Chiu WC, Kerwin A, Seamon MJ, Skarupa D, Frykberg E. Evaluation and management of penetrating lower extremity arterial trauma: an Eastern Association for the Surgery of Trauma practice management guideline. J Trauma Acute Care Surg. 2012;73(5 Suppl 4):S315–20. doi: 10.1097/TA.0b013e31827018e4.CrossRefPubMedGoogle Scholar
  23. 23.
    El-Rosasy MA. Acute shortening and re-lengthening in the management of bone and soft-tissue loss in complicated fractures of the tibia. J Bone Joint Surg Br. 2007;89(1):80–8. doi: 10.1302/0301-620X.89B1.17595.CrossRefPubMedGoogle Scholar
  24. 24.
    Lerner A, Fodor L, Soudry M, Peled IJ, Herer D, Ullmann Y. Acute shortening: modular treatment modality for severe combined bone and soft tissue loss of the extremities. J Trauma. 2004;7(3):603–8. doi:00005373-200409000-00022.CrossRefGoogle Scholar
  25. 25.
    Roberts CS, Pape HC, Jones AL, Malkani AL, Rodriguez JL, Giannoudis PV. Damage control orthopaedics: evolving concepts in the treatment of patients who have sustained orthopaedic trauma. Instr Course Lect. 2005;54:447–62.PubMedGoogle Scholar
  26. 26.
    Smith RM, Giannoudis PV. Trauma and the immune response. J R Soc Med. 1998;91(8):417–20.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Keel M, Trentz O. Pathophysiology of polytrauma. Injury. 2005;36(6):691–709. doi: 10.1016/j.injury.2004.12.037.CrossRefPubMedGoogle Scholar
  28. 28.
    Harwood PJ, Giannoudis PV, van Griensven M, Krettek C, Pape HC. Alterations in the systemic inflammatory response after early total care and damage control procedures for femoral shaft fracture in severely injured patients. J Trauma. 2005;58(3):446–52; discussion 452–4.CrossRefPubMedGoogle Scholar
  29. 29.
    Lichte P, Kobbe P, Dombroski D, Pape HC. Damage control orthopedics: current evidence. Curr Opin Crit Care. 2012;18(6):647–50. doi: 10.1097/MCC.0b013e328359fd57.CrossRefPubMedGoogle Scholar
  30. 30.
    Bhandari M, Guyatt GH, Khera V, Kulkarni AV, Sprague S, Schemitsch EH. Operative management of lower extremity fractures in patients with head injuries. Clin Orthop Relat Res. 2003;407:187–98.CrossRefGoogle Scholar
  31. 31.
    Ruedi TP, Buckley RE, Moran CG. AO principles of fracture management, specific fractures vol 2. Stuttgart: Thieme; 2007.Google Scholar
  32. 32.
    Carroll EA, Koman LA. External fixation and temporary stabilization of femoral and tibial trauma. J Surg Orthop Adv. 2011;20(1):74–81.PubMedGoogle Scholar
  33. 33.
    Ilizarov GA. Clinical application of the tension-stress effect for limb lengthening. Clin Orthop Relat Res. 1990;250:8–26.Google Scholar
  34. 34.
    Behrens F, Searls K. External fixation of the tibia. Basic concepts and prospective evaluation. J Bone Joint Surg Br. 1986;68(2):246–54.PubMedGoogle Scholar
  35. 35.
    Inan M, Halici M, Ayan I, Tuncel M, Karaoglu S. Treatment of type IIIA open fractures of tibial shaft with Ilizarov external fixator versus unreamed tibial nailing. Arch Orthop Trauma Surg. 2007;127(8):617–23. doi: 10.1007/s00402-007-0332-9.CrossRefPubMedGoogle Scholar
  36. 36.
    Dhar SA, Butt MF, Hussain A, Mir MR, Halwai MA, Kawoosa AA. Management of lower limb fractures in polytrauma patients with delayed referral in a mass disaster. The role of the Ilizarov method in conversion osteosynthesis. Injury. 2008;39(8):947–51.CrossRefPubMedGoogle Scholar
  37. 37.
    Ilizarov GA. The tension-stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction. Clin Orthop Relat Res. 1989;239:263–85.Google Scholar
  38. 38.
    Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res. 1989;239:263–85.Google Scholar
  39. 39.
    Sala F, Elbatrawy Y, Thabet AM, Zayed M, Capitani D. Taylor spatial frame fixation in patients with multiple traumatic injuries: study of 57 long-bone fractures. J Orthop Trauma. 2013;27(8):442–50. doi: 10.1097/BOT.0b013e31827cda11.CrossRefPubMedGoogle Scholar
  40. 40.
    Gantsoudes GD, Fragomen AT, Rozbruch SR. Intraoperative measurement of mounting parameters for the Taylor Spatial Frame. J Orthop Trauma. 2010;24(4):258–62.CrossRefPubMedGoogle Scholar
  41. 41.
    Babis GC, Evangelopoulos DS, Kontovazenitis P, Nikolopoulos K, Soucacos PN. High energy tibial plateau fractures treated with hybrid external fixation. J Orthop Surg Res. 2011;6:35.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Bhandari M, Guyatt GH, Swiontkowski MF, Schemitsch EH. Treatment of open fractures of the shaft of the tibia. J Bone Joint Surg Br. 2001;83(1):62–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Antich-Adrover P, Marti-Garin D, Murias-Alvarez J, Puente-Alonso C. External fixation and secondary intramedullary nailing of open tibial fractures. A randomised, prospective trial. J Bone Joint Surg Br. 1997;79(3):433–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Brumback RJ, Ellison Jr PS, Poka A, Lakatos R, Bathon GH, Burgess AR. Intramedullary nailing of open fractures of the femoral shaft. J Bone Joint Surg Am. 1989;71(9):1324–31.CrossRefPubMedGoogle Scholar
  45. 45.
    Neudeck F, Wozasek GE, Obertacke U, Thurnher M, Schlag G. Nailing versus Plating in Thoracic Trauma: An Experimental Study in Sheep. 1996;40(6):980–84.Google Scholar
  46. 46.
    Clifford RP, Beauchamp CG, Kellam JF, Webb JK, Tile M. Plate fixation of open fractures of the tibia. J Bone Joint Surg Br. 1988;70(4):644–8.PubMedGoogle Scholar
  47. 47.
    Wozasek GE, Thurnher M, Redl H, Schla G. Pulmonary Raction during intramedullary fracture management in traumatic shock: an experimental study. The Journal of trauma. 1994;37(2):249–54.Google Scholar
  48. 48.
    Sturmer KM. Measurement of intramedullary pressure in an animal experiment and propositions to reduce the pressure increase. Injury. 1993;24 Suppl 3:S7–21.CrossRefPubMedGoogle Scholar
  49. 49.
    Bach AW, Hansen Jr ST. Plates versus external fixation in severe open tibial shaft fractures. A randomized trial. Clin Orthop Relat Res. 1989;241:89–94.Google Scholar
  50. 50.
    Kim JW, Oh CW, Jung WJ, Kim JS. Minimally invasive plate osteosynthesis for open fractures of the proximal tibia. Clin Orthop Surg. 2012;4(4):313–20. doi: 10.4055/cios.2012.4.4.313.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Hoegel FW, Hoffmann S, Weninger P, Buhren V, Augat P. Biomechanical comparison of locked plate osteosynthesis, reamed and unreamed nailing in conventional interlocking technique, and unreamed angle stable nailing in distal tibia fractures. J Trauma Acute Care Surg. 2012;73(4):933–8. doi: 10.1097/TA.0b013e318251683f.CrossRefPubMedGoogle Scholar
  52. 52.
    Herscovici Jr D, Sanders RW, Scaduto JM, Infante A, DiPasquale T. Vacuum-assisted wound closure (VAC therapy) for the management of patients with high-energy soft tissue injuries. J Orthop Trauma. 2003;17(10):683–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Stone HA, Edelman RD, McGarry JJ. Epigard: a synthetic skin substitute with application to podiatric wound management. J Foot Ankle Surg. 1993;32(2):232–8.PubMedGoogle Scholar
  54. 54.
    Allen MJ, Stirling AJ, Crawshaw CV, Barnes MR. Intracompartmental pressure monitoring of leg injuries. An aid to management. J Bone Joint Surg Br. 1985;67(1):53–7.PubMedGoogle Scholar
  55. 55.
    Power RA, Greengross P. Acute lower leg compartment syndrome. Br J Sports Med. 1991;25(4):218–20.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    BAPRAS/BOA. Standards of the management of open fractures of the lower limb – a short guide. [Internet]. London; 2009 [cited year month day]. Available from: http://www.bapras.org.uk/resources/clinical_guidance/open_fractures_of_the_lower_limb/short_guide.
  57. 57.
    Rüter T, Wagner M. Unfallchirurgie. 2nd ed. München: Elsevier, Urban & Fischer; 2004.Google Scholar
  58. 58.
    Iwamoto Y. What should we do as orthopedic surgeons in catastrophic disasters? J Orthop Sci. 2012;17(1):1–2. doi: 10.1007/s00776-011-0195-3.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Malinoski DJ, Slater MS, Mullins RJ. Crush injury and rhabdomyolysis. Crit Care Clin. 2004;20(1):171–92.CrossRefPubMedGoogle Scholar
  60. 60.
    Baumbach SF, Hobohm L, Wozasek GE. A treatment strategy for complex cases of osteomyelitis in children and its applicability on three exemplary cases. J Pediatr Orthop B. 2011;20(6):432–5. doi: 10.1097/BPB.0b013e3283458846.CrossRefPubMedGoogle Scholar
  61. 61.
    Soucacos PN, Dailiana Z, Beris AE, Johnson EO. Vascularised bone grafts for the management of non-union. Injury. 2006;37 Suppl 1:S41–50.CrossRefPubMedGoogle Scholar
  62. 62.
    Polyzois VD, Galanakos S, Zgonis T, Papakostas I, Macheras G. Combined distraction osteogenesis and Papineau technique for an open fracture management of the distal lower extremity. Clin Podiatr Med Surg. 2010;27(3):463–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Masquelet AC, Begue T. The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am. 2010;41(1):27–37; table of contents. doi:S0030-5898(09)00071-6.CrossRefPubMedGoogle Scholar
  64. 64.
    Burstein FD, Simms C, Cohen SR, Work F, Paschal M. Iliac crest bone graft harvesting techniques: a comparison. Plast Reconstr Surg. 2000;105(1):34–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Kovar FM, Wozasek GE. Bone graft harvesting using the RIA (reaming irrigation aspirator) system – a quantitative assessment. Wien Klin Wochenschr. 2011;123(9-10):285–90. doi: 10.1007/s00508-011-1565-8.CrossRefPubMedGoogle Scholar
  66. 66.
    Magadum MP, Basavaraj Yadav CM, Phaneesha MS, Ramesh LJ. Acute compression and lengthening by the Ilizarov technique for infected nonunion of the tibia with large bone defects. J Orthop Surg (Hong Kong). 2006;14(3):273–9.CrossRefGoogle Scholar
  67. 67.
    Green SA, Jackson JM, Wall DM, Marinow H, Ishkanian J. Management of segmental defects by the Ilizarov intercalary bone transport method. Clin Orthop Relat Res. 1992;280:136–42.Google Scholar
  68. 68.
    Simpson AH, Kenwright J. Fracture after distraction osteogenesis. J Bone Joint Surg Br. 2000;82(5):659–65.CrossRefPubMedGoogle Scholar
  69. 69.
    Tsubota S, Tsuchiya H, Shinokawa Y, Tomita K, Minato H. Transplantation of osteoblast-like cells to the distracted callus in rabbits. J Bone Joint Surg Br. 1999;81(1):125–9.CrossRefPubMedGoogle Scholar
  70. 70.
    Paley D. Problems, obstacles, and complications of limb lengthening by the Ilizarov technique. Clin Orthop Relat Res. 1990;250:81–104.Google Scholar
  71. 71.
    Rozbruch SR, Kleinman D, Fragomen AT, Ilizarov S. Limb lengthening and then insertion of an intramedullary nail: a case-matched comparison. Clin Orthop Relat Res. 2008;466(12):2923–32. doi: 10.1007/s11999-008-0509-8.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Uysal M, Akpinar S, Cesur N, Hersekli MA, Tandogan RN. Plating after lengthening (PAL): technical notes and preliminary clinical experiences. Arch Orthop Trauma Surg. 2007;127(10):889–93. doi: 10.1007/s00402-007-0442-4.CrossRefPubMedGoogle Scholar
  73. 73.
    Koettstorfer J, Hofbauer M, Wozasek GE. Successful limb salvage using the two-staged technique with internal fixation after osteodistraction in an effort to treat large segmental bone defects in the lower extremity. Arch Orthop Trauma Surg. 2012;132(10):1399–405.CrossRefPubMedGoogle Scholar
  74. 74.
    Ebraheim NA, Elgafy H, Xu R. Bone-graft harvesting from iliac and fibular donor sites: techniques and complications. J Am Acad Orthop Surg. 2001;9(3):210–8.CrossRefPubMedGoogle Scholar
  75. 75.
    Muller CA, Green J, Sudkamp NP. Physical and technical aspects of intramedullary reaming. Injury. 2006;37 Suppl 4:S39–49.CrossRefPubMedGoogle Scholar
  76. 76.
    Giannoudis PV, Pountos I, Morley J, Perry S, Tarkin HI, Pape HC. Growth factor release following femoral nailing. Bone. 2008;42(4):751–7.CrossRefPubMedGoogle Scholar
  77. 77.
    Pape HC, Giannoudis P. The biological and physiological effects of intramedullary reaming. J Bone Joint Surg Br. 2007;89(11):1421–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Trauma SurgeryMedical University of ViennaViennaAustria

Personalised recommendations