Skip to main content

Piezoelektrische MEMS-Sensoren zur Viskositäts- und Dichtebestimmung von technischen Flüssigkeiten

  • Chapter
Automobil-Sensorik

Kurzfassung

Die Überwachung der Alterung von Schmierölen in Automobilen liefert einen wesentlichen Beitrag dazu, die Lebenszeit von Antriebsaggregaten und Motoren zu erhöhen und gleichzeitig die Anzahl an notwendigen Ölwechseln nach Bedarf durchzuführen und damit auf ein Minimum zu reduzieren. Dies kann durch eine kontinuierliche Überwachung von physikalischen Flüssigkeitskenngrößen wie Viskosität und Dichte erreicht werden. Piezoelektrisch angetriebene resonante Mikrosysteme eignen sich hierfür besonders, da die Bauelemente kompakt ausgeführt, elektrisch angetrieben und ausgelesen werden können und nur einen geringen Energieverbrauch aufweisen, weil aus den Schwingungseigenschaften direkt auf die Flüssigkeitsparameter zurückgeschlossen werden kann.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Blom, F.R., Bouwstra, S., Elwenspoek, M., Fluitman, J.H.J., “Dependence of the Quality Factor of Micromachined Silicon Beam Resonators on Pressure and Geometry”, Journal of Vacuum Science & Technology B, Vol. 10, No. 1, 1992.

    Google Scholar 

  2. Kuo, J.T.W., Yu, L., Meng, E., “Micromachined Thermal Flow Sensors - a Review”, Micromachines, Vol. 3, No. 3, 2012.

    Google Scholar 

  3. Bogue, R., “Recent Developments in MEMS Sensors: A Review of Applications, Markets and Technologies”, Sensor Review, Vol. 33, No. 4, 2013.

    Google Scholar 

  4. Fleming, W.J., “Overview of Automotive Sensors”, Sensors Journal, IEEE, Vol. 1, No. 4, 2001.

    Google Scholar 

  5. Johnson, B.N., Mutharasan, R., “Biosensing Using Dynamic-Mode Cantilever Sensors: A Review”, Biosensors and Bioelectronics Vol. 32, No. 1, 2012.

    Google Scholar 

  6. Beardslee, L.A., Addous, A.M., Heinrich, S., Josse, F., Dufour, I., Brand, O., “Thermal Excitation and Piezoresistive Detection of Cantilever in-Plane Resonance Modes for Sensing Applications”, Microelectromechanical Systems, Journal of, Vol. 19, No. 4, 2010.

    Google Scholar 

  7. Manzaneque, T., Ruiz, V., Hernando-Garcia, J., Ababneh, A., Seidel, H., Sanchez- Rojas, J.L., “Characterization and Simulation of the First Extensional Mode of Rectangular Micro-Plates in Liquid Media”, Applied Physics Letters Vol. 101, No. 15, 2012.

    Google Scholar 

  8. Seeton, C., “Viscosity-Temperature Correlation for Liquids”, Tribology Letters Vol. 22, No. 1, 2006.

    Google Scholar 

  9. Smits, J.G., Ballato, A., “Dynamic Admittance Matrix of Piezoelectric Cantilever Bimorphs”, Microelectromechanical Systems, Journal of, Vol. 3, No. 3, 1994.

    Google Scholar 

  10. Berlincourt, D., Jaffe, H., Shiozawa, L.R., “Electroelastic Properties of the Sulfides, Selenides, and Tellurides of Zinc and Cadmium”, Physical Review, Vol. 129, No. 3, 1963.

    Google Scholar 

  11. Yoder, M.N., “Wide Bandgap Semiconductor Materials and Devices”, Electron Devices, IEEE Transactions on, Vol. 43, No. 10, 1996.

    Google Scholar 

  12. Martin, F., Muralt, P., Dubois, M.-A., Pezous, A., “Thickness Dependence of the Properties of Highly C-Axis Textured AlN Thin Films”, Journal of Vacuum Science & Technology A, Vol. 22, No. 2, 2004.

    Google Scholar 

  13. Tadigadapa, S., Mateti, K., “Piezoelectric MEMS Sensors: State-of-the-Art and Perspectives”, Measurement Science and Technology Vol. 20, No. 9, 2009.

    Google Scholar 

  14. Dubois, M.-A., Muralt, P, “Properties of Aluminum Nitride Thin Films for Piezoelectric Transducers and Microwave Filter Applications”, Applied Physics Letters Vol. 74, No. 20, 1999.

    Google Scholar 

  15. Lueng, C.M., Chan, H.L.W., Surya, C., Choy, C.L., “Piezoelectric Coefficient of Aluminum Nitride and Gallium Nitride”, Journal of Applied Physics Vol. 88, No. 9, 2000.

    Google Scholar 

  16. Ababneh, A., Schmid, U., Hernando, J., Sanchez-Rojas, J.L., Seidel, H., “The Influence of Sputter Deposition Parameters on Piezoelectric and Mechanical Properties of AlN Thin Films”, Materials Science and Engineering: B, Vol. 172, No. 3, 2010.

    Google Scholar 

  17. Ababneh, A., Alsumady, M., Seidel, H., Manzaneque, T., Hernando-Garcia, J., Sanchez-Rojas, J.L., Bittner, A., Schmid, U., “C-Axis Orientation and Piezoelectric Coefficients of AlN Thin Films Sputter-Deposited on Titanium Bottom Electrodes”, Applied Surface Science Vol. 259, No. 0, 2012.

    Google Scholar 

  18. Barshilia, H.C., Deepthi, B., Rajam, K.S., “Growth and Characterization of Aluminum Nitride Coatings Prepared by Pulsed-Direct Current Reactive Unbalanced Magnetron Sputtering”, Thin Solid Films Vol. 516, No. 12, 2008.

    Google Scholar 

  19. Jian, S.-R., Juang, J.-Y, “Indentation-Induced Mechanical Deformation Behaviors of AlN Thin Films Deposited on C-Plane Sapphire”, Journal of Nanomaterials, Vol. 2012, No. 2012.

    Google Scholar 

  20. Xu, F., Trolier-Mckinstry, S., Ren, W., Xu, B., Xie, Z.-L., Hemker, K.J., “Domain Wall Motion and Its Contribution to the Dielectric and Piezoelectric Properties of Lead Zirconate Titanate Films”, Journal of Applied Physics Vol. 89, No. 2, 2001.

    Google Scholar 

  21. Turner, R.C., Fuierer, P.A., Newnham, R.E., Shrout, T.R., “Special Issue on Transducersmaterials for High Temperature Acoustic and Vibration Sensors: A Review”, Applied Acoustics, Vol. 41, No. 4, 1994.

    Google Scholar 

  22. Aspelmeyer, M., Einfluss Externer FelderAuf Struktur Und Grenzflächenmorphologie Dünner Ferroelektrischer Filme, Doktorarbeit, Ludwig-Maximilians-Universität München, 2001.

    Google Scholar 

  23. Muralt, P., “PZT Thin Films for Microsensors and Actuators: Where Do We Stand?”, IEEE Trans Ultrason Ferroelectr Freq Control, Vol. 47, No. 4, 2000.

    Google Scholar 

  24. Setter, N., Damjanovic, D., Eng, L., Fox, G., Gevorgian, S., Hong, S., Kingon, A., Kohlstedt, H., Park, N.Y., Stephenson, G.B., Stolitchnov, I., Taganstev, A.K., Taylor, D.V., Yamada, T., Streiffer, S., “Ferroelectric Thin Films: Review of Materials, Properties, and Applications”, Journal of Applied Physics Vol. 100, No. 5, 2006.

    Google Scholar 

  25. Akiyama, M., Kamohara, T., Kano, K., Teshigahara, A., Takeuchi, Y., Kawahara, N., “Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Cosputtering”, Advanced Materials Vol. 21, No. 5, 2009.

    Google Scholar 

  26. Manzaneque, T., Hernando-Garcia, J., Ababneh, A., Schwarz, P., Seidel, H., Schmid, U., Sanchez-Rojas, J.L., “Quality-Factor Amplification in Piezoelectric MEMS Resonators Applying an All-Electrical Feedback Loop”, Journal of Micromechanics and Microengineering Vol. 21, No. 2, 2011.

    Google Scholar 

  27. Jordan, O.T.L., Z., Piezoelectric Ceramics Characterization, Institute for Computer Applications in Science and Engineering (ICASE), 2001.

    Google Scholar 

  28. 28“IEEE Standard on Piezoelectricity”, ANSI/IEEE Std 176-1987, Vol. No. 1988.

    Google Scholar 

  29. Kucera, M., Manzaneque, T., Sanchez-Rojas, J.L., Bittner, A., Schmid, U., “Q -Factor Enhancement for Self-Actuated Self-Sensing Piezoelectric MEMS Resonators Applying a Lock-in Driven Feedback Loop”, Journal of Micromechanics and Microengineering Vol. 23, No. 8, 2013.

    Google Scholar 

  30. Martin, M.J., “Frequency Response of a Viscously Damped Flat Plate”, Journal of Applied Mechanics Vol. 78, No. 4, 2011.

    Google Scholar 

  31. Vancura, C., Dufour, I., Heinrich, S.M., Josse, F., Hierlemann, A., “Analysis of Resonating Microcantilevers Operating in a Viscous Liquid Environment”, Sensors and Actuators A: Physical Vol. 141, No. 1, 2008.

    Google Scholar 

  32. Tao, Y., Li, X., Xu, T., Yu, H., Xu, P., Xiong, B., Wei, C., “Resonant Cantilever Sensors Operated in a High-Q in-Plane Mode for Real-Time Bio/Chemical Detection in Liquids”, Sensors and Actuators B: Chemical Vol. 157, No. 2, 2011.

    Google Scholar 

  33. Tamayo, J., Humphris, A.D.L., Malloy, A.M., Miles, M.J., “Chemical Sensors and Biosensors in Liquid Environment Based on Microcantilevers with Amplified Quality Factof’, Ultramicroscopy, Vol. 86, No. 1–2, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schneider, M., Bittner, A., Kucera, M., Schmid, U. (2016). Piezoelektrische MEMS-Sensoren zur Viskositäts- und Dichtebestimmung von technischen Flüssigkeiten. In: Tille, T. (eds) Automobil-Sensorik. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48944-4_17

Download citation

Publish with us

Policies and ethics