Skip to main content

Materialintegrierte Sensorik für Fahrzeug-Leichtbautechnik

  • Chapter
Automobil-Sensorik

Kurzfassung

Die zentrale Herausforderung der Fahrzeug-Leichtbautechnik ist eine steigende Sicherheit und Stabilität bei abnehmendem Gewicht. Extrem leichte Bauteile der Zukunft können Robustheit und Sicherheit nicht mehr durch Masse erreichen, deswegen wird eine sensorische Überwachung entscheidend sein. Dahingehend werden folgende technische Ansätze, insbesondere für Faserverbundwerkstoffe erörtert: Lambwellen- Spek tros kopie zur Schadensdetektion, Glasfaser sen soren zur Dehnungsmessung und integrierte Mikrosensoren zur Herstellungsüberwachung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Elmarakbi, A., “Advanced composite materials for automotive applications: structu- ral integrity and crashworthiness.” Chichester: Wiley, 2014.

    Google Scholar 

  2. Jacob, A., “Carbon fibre and cars - 2013 in review,” Reinforced Plastics, Vol. 58, No. 1, 2014.

    Google Scholar 

  3. Ghassemieh, E., “Materials in Automotive Application, State of the Art and Prospects,” New Trends and Developments in Automotive Industiy, 2011.

    Google Scholar 

  4. Abel, P., Lauter, C., Gries, T., and Troester, T., “Textile composites in the automotive industry.” Elsevier Ltd, 2015.

    Google Scholar 

  5. Kim, D. H., Choi, D. H., and Kim, H. S., “Design optimization of a carbon fiber reinforced composite automotive lower arm,” Composites Part B: Engineering, Vol. 58, 2014.

    Google Scholar 

  6. Hesse, S. H., Lukaszewicz, D. H.-J. a., and Duddeck, F., “A method to reduce design complexity of automotive composite structures with respect to crashworthiness,” Composite Structures, Vol. 129, 2015.

    Google Scholar 

  7. Holmes, M., “Carbon fibre reinforced plastics market continues growth path,” Reinforced Plastics, Vol. 57, No. 6, 2013.

    Google Scholar 

  8. Mathes, V and Witten, E., “Handbuch Faserverbundkunststoffe/Composites: Grundlagen, Verarbeitung, Anwendungen,” 4. Aufl. Wiesbaden: Springer Vieweg, 2014.

    Google Scholar 

  9. Lang, W., Jakobs, F., et al., “From embedded sensors to sensorial materials - The road to function scale integration,” Sensors and Actuators, A: Physical, Vol. 171, No. 1, 2011.

    Google Scholar 

  10. Kim, K.-S., Breslauer, M., and Springer, G. S., “The Effect of Embedded Sensors on the Strength of Composite Laminates,” Journal of Reinforced Plastics and Composites, Vol. 11, No. 8, 1992.

    Google Scholar 

  11. Crawley, E. F. and De Luis, J., “Use of piezoelectric actuators as elements of intelligent structures,” AIAA Journal, Vol. 25, No. 10, Oct. 1987.

    Google Scholar 

  12. Mall, S. and Coleman, J. M., “Monotonic and fatigue loading behavior of quasiisotropic graphite/epoxy laminate embedded with piezoelectric sensor,” Smart Materials and Structures, Vol. 7, No. 6, 1999.

    Google Scholar 

  13. Masmoudi, S., El Mahi, A., and Turki, S., “Use of piezoelectric as acoustic emission sensor for in situ monitoring of composite structures,” Composites Part B: Engineering, Vol. 80, 2015.

    Google Scholar 

  14. Hufenbach, W., Gude, M., and Heber, T., “Embedding versus adhesive bonding of adapted piezoceramic modules for function-integrative thermoplastic composite structures,” Composites Science and Technology, Vol. 71, No. 8, 2011.

    Google Scholar 

  15. Kahali Moghaddam, M., Boll, D., and Lang, W., “Embedding rigid and flexible inlays in carbon fiber reinforced plastics,” in Advanced Intelligent Mechatronics (AIM), 2014IEEE/ASMEInternational Conference on, 2014.

    Google Scholar 

  16. Dumstorff, G., Paul, S., and Lang, W., “Integration without disruption: The basic challenge of sensor integration,” IEEE Sensors Journal, Vol. 14, No. 7, 2014.

    Google Scholar 

  17. Dumstorff, G., “Modellierung und experimentelle Untersuchung von materialintegrierten Sensoren,” Universität Bremen, 2015.

    Google Scholar 

  18. Naik, N. K., Sirisha, M., and Inani, a., “Permeability characterization of polymer matrix composites by RTM/VARTM,” Progress in Aerospace Sciences, Vol. 65, 2014.

    Google Scholar 

  19. Arbter, R., Beraud, J. M., et al., “Experimental determination of the permeability of textiles: A benchmark exercise,” Composites Part A: Applied Science and Manufacturing, Vol. 42, No. 9, 2011.

    Google Scholar 

  20. Bernstein, J. R. and Wagner, J. W., “Fiber optic sensors for use in monitoring flow front in vacuum resin transfer molding processes,” Review of Scientific Instruments, Vol. 68, No. 5, 1997.

    Google Scholar 

  21. Marin, E., Robert, L., Triollet, S., and Ouerdane, Y., “Liquid Resin Infusion process monitoring with superimposed Fibre Bragg Grating sensor,” Polymer Testing, Vol. 31, No. 8, 2012.

    Google Scholar 

  22. Nielsen, M. W., Schmidt, J. W., et al., “Life cycle strain monitoring in glass fibre reinforced polymer laminates using embedded fibre Bragg grating sensors from manufacturing to failure,” Journal of Composite Materials, Vol. 48, No. 3, 2014.

    Google Scholar 

  23. Murukeshan, V. M., Chan, P. Y., Ong, L. S., and Seah, L. K., “Cure monitoring of smart composites using Fiber Bragg Grating based embedded sensors,” Sensors and Actuators A: Physical, Vol. 79, No. 2, 2000.

    Google Scholar 

  24. Antonucci, V., Giordano, M., et al., “Real time monitoring of cure and gelification of a thermoset matrix,” Composites Science and Technology, Vol. 66, No. 16, 2006.

    Google Scholar 

  25. Stöven, T., Weyrauch, F., Mitschang, P., and Neitzel, M., “Continuous monitoring of three-dimensional resin flow through a fibre preform,” Composites Part A: Applied Science and Manufacturing, Vol. 34, No. 6, 2003.

    Google Scholar 

  26. Schmachtenberg, E., Schulte Zur Heide, J., and Töpker, J., “Application of ultrasonics for the process control of Resin Transfer Moulding (RTM),” Polymer Testing, Vol. 24, No. 3, 2005.

    Google Scholar 

  27. Visvanathan, K. and Balasubramaniam, K., “Ultrasonic torsional guided wave sensor for flow front monitoring inside molds,” Review of Scientific Instruments, Vol. 78, No. 1, 2007.

    Google Scholar 

  28. Hegg, M. C. and Mamishev, a. V., “Influence of variable plate separation on fringing electric fields in parallel-plate capacitors,” Conference Record of the 2004 IEEE International Symposium on Electrical Insulation, No. September, 2004.

    Google Scholar 

  29. Breede, A., Moghaddam, M. K., et al., “Online Process Monitoring and Control by Dielectric Sensors for a Composite Main Spar for Wind Turbine Blades,” in 20. International Conference on Composite Materials, 2011, No. July.

    Google Scholar 

  30. Yenilmez, B. and Murat Sozer, E., “A grid of dielectric sensors to monitor mold filling and resin cure in resin transfer molding,” Composites Part A: Applied Science and Manufacturing, Vol. 40, No. 4, 2009.

    Google Scholar 

  31. Matsuzaki, R., Kobayashi, S., Todoroki, A., and Mizutani, Y., “Full-field monitoring of resin flow using an area-sensor array in a VaRTM process,” Composites Part A: Applied Science and Manufacturing, Vol. 42, No. 5, 2011.

    Google Scholar 

  32. Rowe, G. I., Yi, J. H., et al., “Fill-front and cure progress monitoring for VARTM with auto-calibrating dielectric sensors,” in Proc., SAMPE 2005 Conference, 2005.

    Google Scholar 

  33. Skordos, A. A., Karkanas, P. I., and Partridge, I. K., “A dielectric sensor for measuring flow in resin transfer moulding,” Measurement Science and Technology, Vol. 11, No. 1, 2000.

    Google Scholar 

  34. Xin, C., Gu, Y., et al., “Online monitoring and analysis of resin pressure inside composite laminate during zero-bleeding autoclave process,” Polymer Composites, Vol. 32, No. 2, 2011.

    Google Scholar 

  35. Di Fratta, C., Klunker, F., and Ermanni, P., “A methodology for flow-front estimation in LCM processes based on pressure sensors,” Composites Part A: Applied Science and Manufacturing, Vol. 47, 2013.

    Google Scholar 

  36. Simacek, P., Eksik, O., et al., “Experimental validation of post-filling flow in vacuum assisted resin transfer molding processes,” Composites Part A: Applied Science and Manufacturing, Vol. 43, No. 3, 2012.

    Google Scholar 

  37. Kahali Moghaddam, M., Breede, A., Brauner, C., and Lang, W., “Embedding Piezoresistive Pressure Sensors to Obtain Online Pressure Profiles Inside Fiber Composite Laminates,” Sensors, Vol. 15, No. 4, 2015.

    Google Scholar 

  38. Konstantopoulos, S., Tonejc, M., Maier, A., and Schledjewski, R., “Exploiting temperature measurements for cure monitoring of FRP composites—Applications with thermocouples and infrared thermography,” Journal of Reinforced Plastics and Composites, 2015.

    Google Scholar 

  39. Tuncol, G., Danisman, M., Kaynar, A., and Sozer, E. M., “Constraints on monitoring resin flow in the resin transfer molding (RTM) process by using thermocouple sensors,” Composites Part A: Applied Science and Manufacturing, Vol. 38, No. 5, 2007.

    Google Scholar 

  40. Crasto, A. S., Kim, R., a N. Y., and Russell, J. D., “In Situ Monitoring of Residual Strain Developement During Composite Cure,” Polymer Composites, Vol. 23, No. 3, 2002.

    Google Scholar 

  41. Kim, H.-S., Yoo, S.-H., and Chang, S.-H., “In situ monitoring of the strain evolution and curing reaction of composite laminates to reduce the thermal residual stress using FBG sensor and dielectrometry,” Composites Part B: Engineering, Vol. 44, No. 1, 2013.

    Google Scholar 

  42. Minakuchi, S., Takeda, N., et al., “Life cycle monitoring of large-scale CFRP VARTM structure by fiber-optic-based distributed sensing,” Composites Part A: Applied Science and Manufacturing, Vol. 42, No. 6, 2011.

    Google Scholar 

  43. Kang, H.-K., Kang, D.-H., et al., “Cure monitoring of composite laminates using fiber optic sensors,” Smart Materials and Structures, Vol. 11, No. 2, 2002.

    Google Scholar 

  44. Hernandez-Moreno, H., Collombet, F., et al., “Entire life time monitoring of filament wound composite cylinders using bragg grating sensors: I. adapted tooling and instrumented specimen,” Applied Composite Materials, Vol. 16, No. 3, 2009.

    Google Scholar 

  45. Rath, M., Doring, J., Stark, W., and Hinrichsen, G., “Process monitoring of moulding compounds by ultrasonic measurements in a compression mould,” NDT and E International, Vol. 33, No. 2, 2000.

    Google Scholar 

  46. Liebers, N., Raddatz, F., and Schadow, F., “Effective and Flexible Ultrasound Sensors for Cure Monitoring for Industrial Composite Production,” in Deutersch Luft- undRaumfahrtkongress 2012, 2012.

    Google Scholar 

  47. McIlhagger, A., Brown, D., and Hill, B., “The development of a dielectric system for the on-line cure monitoring of the resin transfer moulding process,” Composites Part A Applied Science and Manufacturing, Vol. 31, No. 12, 2000.

    Google Scholar 

  48. Hardis, R., Jessop, J. L. P., Peters, F. E., and Kessler, M. R., “Cure kinetics characterization and monitoring of an epoxy resin using DSC, Raman spectroscopy, and DEA,” Composites Part A: Applied Science and Manufacturing, Vol. 49, 2013.

    Google Scholar 

  49. Kim, H. G. and Lee, D. G., “Dielectric cure monitoring for glass/polyester prepreg composites,” Composite Structures, Vol. 57, 2002.

    Google Scholar 

  50. Bang, K. G., Kwon, J. W., Lee, D. G., and Lee, J. W., “Measurement of the degree of cure of glass fiber-epoxy composites using dielectrometry,” Journal of Materials Processing Technology, Vol. 113, No. 1–3, 2001.

    Google Scholar 

  51. Lee, D. G. and Kim, H. G., “Non-Isothermal in Situ Dielectric Cure Monitoring for Thermosetting Matrix Composites,” Journal of Composite Materials, Vol. 38, No. 12, 2004.

    Google Scholar 

  52. Kim, D., Centea, T., and Nutt, S. R., “Out-time effects on cure kinetics and viscosity for an out-of-autoclave (OOA) prepreg: Modelling and monitoring,” Composites Science and Technology, Vol. 100, 2014.

    Google Scholar 

  53. Sorrentino, L., Bellini, C., Capriglione, D., and Ferrigno, L., “Local monitoring of polymerization trend by an interdigital dielectric sensor,” The International Journal of Advanced Manufacturing Technology, 2015.

    Google Scholar 

  54. Boll, D., Schubert, K., Brauner, C., and Lang, W., “Miniaturized Flexible Interdigital Sensor for In Situ Dielectric Cure Monitoring of Composite Materials,” Sensors Journal, IEEE, Vol. 14, No. 7, 2014.

    Google Scholar 

  55. Yang, Y., Chiesura, G., et al., “Development of a Dielectric Sensor System for the On-line Cure Monitoring of Composites,” Procedia Technology, Vol. 15, 2014.

    Google Scholar 

  56. Silversides, I., Maslouhi, A., and LaPlante, G., “Acoustic emission monitoring of interlaminar delamination onset in carbon fibre composites,” Structural Health Monitoring, Vol. 12, No. 2, 2013.

    Google Scholar 

  57. Diamanti, K. and Soutis, C., “Structural health monitoring techniques for aircraft composite structures,” Progress in Aerospace Sciences, Vol. 46, No. 8, 2010.

    Google Scholar 

  58. Luyckx, G., Voet, E., et al., “Response of FBGs in Microstructured and Bow Tie Fibers Embedded in Laminated Composite,” Ieee Photonics Technology Letters, Vol. 21, No. 18, Sep. 2009.

    Google Scholar 

  59. Kuang, K. S. C., Kenny, R., et al., “Embedded fibre Bragg grating sensors in advanced composite materials,” Composites Science and Technology, Vol. 61, No. 10, 2001.

    Google Scholar 

  60. Collombet, F., Mulle, M., Grunevald, Y-H., and Zitoune, R., “Contribution of Embedded Optical Fiber with Bragg Grating in Composite Structures for Tests- Simulations Dialogue,” Mechanics of Advanced Materials and Structures, Vol. 13, No. 5, 2006.

    Google Scholar 

  61. Lu, S., Jiang, M., et al., “Multi-Damage Identification System of CFRP by Using FBG Sensors and Multi-Classification RVM Method,” IEEE Sensors Journal, Vol. 15, No. 11, 2015.

    Google Scholar 

  62. Sasy Chan, Y. W. and Zhou, Z., “Advances of FRP-based smart components and structures,” Pacific Science Review, Vol. 16, No. 1, 2014.

    Google Scholar 

  63. Ruzek, R., Kudrna, P., et al., “Strain and damage monitoring in CFRP fuselage panels using fiber Bragg grating sensors. Part II: Mechanical testing and validation,” Composite Structures, Vol. 107, 2014.

    Google Scholar 

  64. Budelmann, C. and Krieg-Bruckner, B., “From sensorial to smart materials: Intelligent optical sensor network for embedded applications,” Journal of Intelligent Material Systems and Structures, Vol. 24, No. 18, 2012.

    Google Scholar 

  65. Zhou, G. and Sim, L. M., “Damage detection and assessment in fibre-reinforced composite structures with embedded fibre optic sensors-review,” Smart Materials and Structures, Vol. 11, No. 6, 2002.

    Google Scholar 

  66. Luyckx, G., Voet, E., Lammens, N., and Degrieck, J., “Strain measurements of composite laminates with embedded fibre bragg gratings: Criticism and opportunities for research,” Sensors, Vol. 11, No. 1, 2011.

    Google Scholar 

  67. Sonnenfeld, C., Luyckx, G., et al., “Internal Strain Monitoring of Composite Materials with Microstructured Optical Fiber Bragg Grating Sensors,” in Structural Health Monitoring, 2015.

    Google Scholar 

  68. Chehura, E., Skordos, a a, et al., “Strain development in curing epoxy resin and glass fibre/epoxy composites monitored by fibre Bragg grating sensors in birefrin- gent optical fibre,” Smart Materials and Structures, Vol. 14, No. 2, 2005.

    Google Scholar 

  69. Yashiro, S. and Okabe, T., “Estimation of fatigue damage in holed composite laminates using an embedded FBG sensor,” Composites Part A: Applied Science and Manufacturing, Vol. 42, No. 12, 2011.

    Google Scholar 

  70. Abry, J. C., Choi, Y. K., et al., “In-situ monitoring of damage in CFRP laminates by means of AC and DC measurements,” Composites Science and Technology, Vol. 61, No. 6, 2001.

    Google Scholar 

  71. Zhang, H., Liu, Y., et al., “Composites : Part A Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fibre prep- reg,” Composites Part A, Vol. 70, 2015.

    Google Scholar 

  72. Eckstein, B., Bach, M., and Moix Bonet, M., “Analysis of Loading Effects on Guided Ultrasonic Waves and Damage Assessment in a Full-scale CFRP Fuselage Structure,” in Structural Health Monitoring, 2015.

    Google Scholar 

  73. Scheerer, M., Simon, Z., et al., “Development of Integrated Process and Structural Health Monitoring System Based on Piezosensors for CFRP Reinforcements Made by Resin Transfer Molding,” in Structural Health Monitoring, 2015.

    Google Scholar 

  74. Carboni, M., Gianneo, A., and Giglio, M., “A Lamb waves based statistical approach to structural health monitoring of carbon fibre reinforced polymer composites,” Ultrasonics, Vol. 60, 2015.

    Google Scholar 

  75. Elkjaer, K., Astafiev, K., Ringgaard, E., and Zawada, T., “Integrated Sensor Arrays based on PiezoPaint TM for SHM Applications,” in Annual Conf. of the Prognostics and Health Management Society (USA,), 2013.

    Google Scholar 

  76. Su, Z., Wang, X., et al., “Active Sensor Network for Health Monitoring of Composite Structures,” Smart Materials and Structures, Vol. 15, No. 6, 2006.

    Google Scholar 

  77. Weder, A., Geller, S., et al., “A novel technology for the high-volume production of intelligent composite structures with integrated piezoceramic sensors and electronic components,” Sensors and Actuators, A: Physical, Vol. 202, 2013.

    Google Scholar 

  78. Salas, M., Focke, O., Herrmann, A. S., and Lang, W., “Wireless Power Transmission for Structural Health Monitoring of Fiber-Reinforced-Composite Materials,” IEEE Sensors Journal, Vol. 14, No. 7, 2014.

    Google Scholar 

  79. Yan, Y. J. and Yam, L. H., “Online detection of crack damage in composite plates using embedded piezoelectric actuators/sensors and wavelet analysis,” Composite Structures, Vol. 58, No. 1, 2002.

    Google Scholar 

  80. Schulze, R., Streit, P., et al., “Fiber-reinforced composite structures with embedded piezoelectric sensors,” in SENSORS, 2014 IEEE, 2014.

    Google Scholar 

  81. Foote, P. D., “Integration of structural health monitoring sensors with aerospace, composite materials and structures,” Materialwissenschaft und Werkstofftechnik, Vol. 46, No. 2, 2015.

    Google Scholar 

  82. Bernhard, J. and Drager, T., “Integrating RFID in fibre-reinforced plastics,” in RFID SysTech 2011, 2011.

    Google Scholar 

  83. Matsuzaki, R. and Todoroki, A., “Wireless detection of internal delamination cracks in CFRP laminates using oscillating frequency changes,” Composites Science and Technology, Vol. 66, No. 3–4, 2006.

    Google Scholar 

  84. Park, S., Kim, J.-W., Lee, C., and Park, S.-K., “Impedance-based wireless debonding condition monitoring of CFRP laminated concrete structures,” NDT & E International, Vol. 44, No. 2, 2011.

    Google Scholar 

  85. Daliri, A., Galehdar, A., et al., “Wireless strain measurement using circular microstrip patch antennas,” Sensors and Actuators, A: Physical, Vol. 184, 2012.

    Google Scholar 

  86. Salas, M., Focke, O., Herrmann, A. S., and Lang, W., “Low-frequency Inductive Power Transmission for Piezo-Wafer-Active-Sensors in the Structural Health Monitoring of Carbon-Fiber-Reinforced-Polymer,” Procedia Technology, Vol. 15, 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hübner, M., Moghaddam, M., Salas, M., Dumstorff, G., Lang, W. (2016). Materialintegrierte Sensorik für Fahrzeug-Leichtbautechnik. In: Tille, T. (eds) Automobil-Sensorik. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48944-4_10

Download citation

Publish with us

Policies and ethics