Skip to main content

Cobra: A Tool for Solving General Deductive Games

  • Conference paper
  • First Online:
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9450))

Included in the following conference series:

  • 787 Accesses

Abstract

We propose a general framework for modelling and solving deductive games, where one player selects a secret code and the other player strives to discover this code using a minimal number of allowed experiments that reveal some partial information about the code. The framework is implemented in a software tool Cobra, and its functionality is demonstrated by producing new results about existing deductive games.

A. Kučera— Supported by the Czech Science Foundation, grant No. 15-17564S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. COBRA, the COde-BReaking game Analyzer (2014). https://github.com/myreg/cobra

  2. Bento, L., Pereira, L., Rosa, A.: Mastermind by evolutionary algorithms. In: Proceedings of the International Symposium on Applied Computing, pp. 307–311. ACM (1999)

    Google Scholar 

  3. Berghman, L., Goossens, D., Leus, R.: Efficient solutions for mastermind using genetic algorithms. Comput. Oper. Res. 36(6), 1880–1885 (2009)

    Article  MATH  Google Scholar 

  4. Bernier, J., Herraiz, C., Merelo, J., Olmeda, S., Prieto, A.: Solving mastermind using GAs and simulated annealing: a case of dynamic constraint optimization. In: Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (eds.) PPSN IV. LNCS, vol. 1141, pp. 554–563. Springer, Heidelberg (1996)

    Google Scholar 

  5. Biere, A.: PicoSAT essentials. J. Satisfiability Boolean Model. Comput. 4(2–4), 75–97 (2008)

    MATH  Google Scholar 

  6. Bond, M., Zieliński, P.: Decimalisation table attacks for PIN cracking. Technical report UCAM-CL-TR-560 arXiv:1407.3926, University of Cambridge (2003)

  7. Chen, S.T., Lin, S.S., Huang, L.T., Hsu, S.H.: Strategy optimization for deductive games. Eur. J. Oper. Res. 183, 757–766 (2007)

    Article  MATH  Google Scholar 

  8. Dyson, F.: The problem of the pennies. Math. Gaz. 30, 231–234 (1946)

    Article  MATH  Google Scholar 

  9. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Erdös, P., Rényi, A.: On two problems of information theory. Magyar Tud. Akad. Mat. Kutató Int. Közl 8, 229–243 (1963)

    MATH  Google Scholar 

  11. Gagneur, J., Elze, M., Tresch, A.: Selective phenotyping, entropy reduction, and the Mastermind game. BMC Bioinform. 12(406), 1–10 (2011)

    Google Scholar 

  12. Goodrich, M.: The Mastermind attack on genomic data. In: Proceedings of 30th IEEE Symposium on Security and Privacy, pp. 204–218. IEEE (2009)

    Google Scholar 

  13. Guy, R., Nowakowski, R.: Coin-weighting problems. Am. Math. Mon. 102(2), 164–167 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Irving, R.: Towards an optimum mastermind strategy. J. Recreational Math. 11(2), 81–87 (1978–1979)

    Google Scholar 

  15. Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large and sparse graphs. In: Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments (ALENEX 2007), pp. 135–149. SIAM (2007)

    Google Scholar 

  16. Klimoš, M., Kučera, A.: Strategy synthesis for general deductive games based on SAT solving. CoRR abs/1407.3926 (2015)

    Google Scholar 

  17. Knuth, D.: The computer as mastermind. J. Recreational Math. 9(1), 1–6 (1976)

    MathSciNet  Google Scholar 

  18. Kooi, B.: Yet another mastermind strategy. ICGA J. 28(1), 13–20 (2005)

    MathSciNet  Google Scholar 

  19. Koyama, K., Lai, T.: An optimal mastermind strategy. J. Recreational Math. 25(4), 251–256 (1993)

    MATH  Google Scholar 

  20. Neuwirth, E.: Some strategies for mastermind. Zeitschrift für Oper. Res. 26, 257–278 (1982)

    MATH  MathSciNet  Google Scholar 

  21. Steel, G.: Formal analysis of PIN block attacks. Theor. Comput. Sci. 367(1–2), 257–270 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonín Kučera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klimoš, M., Kučera, A. (2015). Cobra: A Tool for Solving General Deductive Games. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2015. Lecture Notes in Computer Science(), vol 9450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48899-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48899-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48898-0

  • Online ISBN: 978-3-662-48899-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics