LBM-LES Modelling of Low Reynolds Number Turbulent Flow Over NACA0012 Aerofoil

  • Nima NadimEmail author
  • Tilak T. Chandratilleke
  • Mathias J. Krause
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


Contemporary evolution of numerical methods in fluid dynamics includes a growing application of lattice Boltzmann modelling (LBM) for turbulent flows. Large eddy simulation, implemented on LBM framework, is established as a competent alternative for the finite volume turbulence modelling method owing to enhanced feasibility of parallelism and the transient nature of LBM equations. This work utilises a simple Smagorinsky SGS model to investigate fundamental characteristics of a turbulent flow over NACA0012 aerofoil for a range of low Reynolds number in a turbulent flow.


Lattice boltzmann model Turbulence Smagorinsky model NACA0012 Openlb 


  1. Chen H, Chen S, Matthaeus HW (1992) Recovery of the Navier-Stokes equation using a lattice Boltzmann method. Phys Rev A 45:5339–5342CrossRefGoogle Scholar
  2. Hou S, Sterling J, Chen S, Doolen GD (1994) A lattice Boltzmann subgrid model for high Reynolds number flows. http://arXiv:comp-gas/9401004v1Google Scholar
  3. Huidan Y, Sharath SG, Luo LS (2005) DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method. J Comput Phys 209:599–616CrossRefzbMATHGoogle Scholar
  4. Krause MJ et al (2015) Open source lattice Boltzmann simulation code.
  5. Malaspinas O, Sagaut P (2012) Consistent subgrid scale modelling for lattice Boltzmann methods. J Fluid Mech 700:514542MathSciNetCrossRefzbMATHGoogle Scholar
  6. Menter FR, Egorov Y (2010) The scale-adaptive simulation method for unsteady turbulent flow predictions part 1: theory and model description, flow. Turbul Combust 85–1:113–138CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Nima Nadim
    • 1
    Email author
  • Tilak T. Chandratilleke
    • 1
  • Mathias J. Krause
    • 2
  1. 1.Department of Mechanical EngineeringCurtin UniversityPerthWestern Australia
  2. 2.Institutes for Mechanical Process Engineering and Mechanics and Applied and Numerical MathematicsKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations