Advertisement

Comparison of the Direct Numerical Simulation of Zero and Low Adverse Pressure Gradient Turbulent Boundary Layers

  • V. KitsiosEmail author
  • C. Atkinson
  • J. A. Sillero
  • G. Borrell
  • A. Gul Gungor
  • J. Jiménez
  • J. Soria
Conference paper
  • 1.7k Downloads
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Statistics from the direct numerical simulation (DNS) of an adverse pressure gradient (APG) turbulent boundary layer (TBL) are presented. Flow simulations are performed using a TBL DNS code with the desired APG applied via a tailored farfield boundary condition. The APG TBL has a maximum momentum thickness based Reynolds number (\(Re_{\delta _2}\)) of 6000, and a near constant ratio of pressure velocity to freestream velocity, over a range of \(Re_{\delta _2}\) from 3000 to 5000. Streamwise velocity variance profiles are shown to collapse under outer velocity scaling as opposed to friction velocity scaling over this range.

Keywords

Direct Numerical Simulation Turbulent Boundary Layer Adverse Pressure Gradient Freestream Velocity Pressure Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We acknowledge the funding from the Australian Research Council (ARC) and European Research Council, and computational resources provided by the NCI, iVEC and PRACE. Julio Soria gratefully acknowledges the support of an ARC Discovery Outstanding Researcher Award fellowship.

References

  1. Borrell G, Sillero JA, Jiménez J (2013) A code for direct numerical simulation of turbulent boundary layers at high reynolds numbers in BG/P supercomputers. Comput Fluids 80:37–43CrossRefzbMATHGoogle Scholar
  2. Gungor AG, Simens MP, Jiménez J (2012) Direct numerical simulation of wake-perturbed separated boundary layers. J Turbomach 134:061024CrossRefGoogle Scholar
  3. Jiménez J, Hoyas S, Simens MP, Mizuno Y (2010) Turbulent boundary layers and channels at moderate Reynolds numbers. J Fluid Mech 657(22):335–360CrossRefzbMATHGoogle Scholar
  4. Kitsios V, Cordier L, Bonnet J-P, Ooi A, Soria J (2011) On the coherent structures and stability properties of a leading edge separated airfoil with turbulent recirculation. J Fluid Mech 683:395–416CrossRefzbMATHGoogle Scholar
  5. Lee J-H, Sung J (2008) Effects of an adverse pressure gradient on a turbulent boundary layer. Int J Heat Fluid Flow 29:568–578CrossRefGoogle Scholar
  6. Lele SK (1992) Compact finite difference schemes with spectral-like resolution. J Comput Phys 103:16–42MathSciNetCrossRefzbMATHGoogle Scholar
  7. Mellor GL, Gibson DM (1966) Equilibrium turbulent boundary layers. J Fluid Mech 24:225–253CrossRefGoogle Scholar
  8. Sillero J (2014) High Reynolds number turbulent boundary layers. PhD thesis, Universidad Politénica de MadridGoogle Scholar
  9. Sillero JA, Jiménez J, Moser RD (2013) One-point statistics for turbulent wall-bounded at Reynolds numbers up to \(\delta ^+\approx 2000\). Phys Fluids 25:105102CrossRefGoogle Scholar
  10. Simens MP, Jiménez J, Hoyas S, Mizuno Y (2009) A high-resolution code for tubulent boundary layers. J Comput Phys 228:4128–4231CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • V. Kitsios
    • 1
    Email author
  • C. Atkinson
    • 1
  • J. A. Sillero
    • 2
  • G. Borrell
    • 2
  • A. Gul Gungor
    • 3
  • J. Jiménez
    • 2
  • J. Soria
    • 4
  1. 1.Laboratory for Turbulence Research in Aerospace and Combustion, Department of Mechanical and Aerospace EngineeringMonash UniversityMelbourneAustralia
  2. 2.School of AeronauticsUniversidad Politécnica de MadridMadridSpain
  3. 3.Department of Astronautical EngineeringIstanbul Technical UniversityIstanbulTurkey
  4. 4.Department of Aeronautical EngineeringKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia

Personalised recommendations