Skip to main content

Molekulare Onkologie

  • Chapter
  • 3855 Accesses

Zusammenfassung

In der klinischen Routine nimmt die bildgebende Diagnostik bei onkologischen Erkrankungen, insbesondere beim Staging und Restaging, eine wichtige Stellung ein. Zunehmend finden funktionell bildgebende Verfahren Einsatz in der Diagnostik, so die Positronenemissionstomographie (PET) bzw. PET/CT. Die PET- und PET/CT-Technik basiert auf der Bildgebung molekularer Prozesse, die physiologischen Vorgängen zugrunde liegen. Mit spezifischen Radiotracern können z. B. regionaler Blutfluss, Rezeptorsysteme oder Stoffwechselprozesse in-vivo bildgebend gezeigt werden. Die PET ist eine sehr sensitive Bildgebungsmodalität zur Darstellung biologisch aktiver Substanzen, die es erlaubt, diese selbst in nur pikomolaren Konzentrationen zu visualisieren. Der Schwerpunkt dieses Kapitels liegt auf der Vorstellung neuer Tracer in der onkologischen PET- und PET/CT-Bildgebung, insbesondere [18F]FLT, [18F]Galakto-RGD, [18F]FAZA, [18F]Fluorid, [18F]FMISO, [68Ga]DOTATOC, [11C]Cholin, [18F]FET und [18F]DOPA.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  1. Beyer T, Townsend DW, Brun T et al. (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41(8): 1369–1379

    CAS  PubMed  Google Scholar 

  2. Fletcher JW, Djulbegovic B, Soares HP et al. (2008) Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 49(3): 480–508

    Article  PubMed  Google Scholar 

  3. Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P (2007) Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 18(3): 581–592

    Article  CAS  PubMed  Google Scholar 

  4. Hofer C, Laubenbacher C, Block T, Breul J, Hartung R, Schwaiger M (1999) Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol 36(1): 31–35

    Article  CAS  PubMed  Google Scholar 

  5. Morris MJ, Akhurst T, Osman I et al. (2002) Fluorinated deoxyglucose positron emission tomography imaging in progressive metastatic prostate cancer. Urology 59(6): 913–918

    Article  PubMed  Google Scholar 

  6. Nunez R, Macapinlac HA, Yeung HW et al. (2002) Combined 18F-FDG and 11 C-methionine PET scans in patients with newly progressive metastatic prostate cancer. J Nucl Med 43(1): 46–55

    PubMed  Google Scholar 

  7. Albrecht S, Buchegger F, Soloviev D et al. (2007) (11)C-acetate PET in the early evaluation of prostate cancer recurrence. Eur J Nucl Med Mol Imaging 34(2): 185–196

    Article  PubMed  Google Scholar 

  8. Dehdashti F, Picus J, Michalski JM et al. (2005) Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur J Nucl Med Mol Imaging 32(3): 344–350

    Article  PubMed  Google Scholar 

  9. Kotzerke J, Prang J, Neumaier B et al. (2000) Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur J Nucl Med 27(9): 1415–1419

    Article  CAS  PubMed  Google Scholar 

  10. Larson SM, Morris M, Gunther I et al. (2004) Tumor localization of 16beta-18F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med 45(3): 366–373

    CAS  PubMed  Google Scholar 

  11. Toth G, Lengyel Z, Balkay L, Salah MA, Tron L, Toth C (2005) Detection of prostate cancer with 11 C-methionine positron emission tomography. J Urol 173(1): 66–69, discussion 69

    Article  PubMed  Google Scholar 

  12. Wachter S, Tomek S, Kurtaran A et al. (2006) 11 C-acetate positron emission tomography imaging and image fusion with computed tomography and magnetic resonance imaging in patients with recurrent prostate cancer. J Clin Oncol 24(16): 2513–2519

    Article  PubMed  Google Scholar 

  13. Kwee SA, Coel MN, Lim J, Ko JP (2005) Prostate cancer localization with 18fluorine fluorocholine positron emission tomography. J Urol 173(1): 252–255

    Article  PubMed  Google Scholar 

  14. Reske SN, Blumstein NM, Neumaier B et al. (2006) Imaging prostate cancer with 11 C-choline PET/CT. J Nucl Med 47(8): 1249–1254

    CAS  PubMed  Google Scholar 

  15. Yamaguchi T, Lee J, Uemura H et al. (2005) Prostate cancer: a comparative study of 11 C-choline PET and MR imaging combined with proton MR spectroscopy. Eur J Nucl Med Mol Imaging 32(7): 742–748

    Article  CAS  PubMed  Google Scholar 

  16. Farsad M, Schiavina R, Castellucci P et al. (2005) Detection and localization of prostate cancer: correlation of (11)C-choline PET/CT with histopathologic step-section analysis. J Nucl Med 46(10): 1642–1649

    CAS  PubMed  Google Scholar 

  17. Martorana G, Schiavina R, Corti B et al. (2006) 11 C-choline positron emission tomography/computerized tomography for tumor localization of primary prostate cancer in comparison with 12-core biopsy. J Urol 176(3): 954–960, discussion 960

    Article  CAS  PubMed  Google Scholar 

  18. Scher B, Seitz M, Albinger W et al. (2007) Value of 11 C-choline PET and PET/CT in patients with suspected prostate cancer. Eur J Nucl Med Mol Imaging 34(1): 45–53

    Article  PubMed  Google Scholar 

  19. Giovacchini G, Picchio M, Coradeschi E et al. (2008) [(11)C]choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. Eur J Nucl Med Mol Imaging 35(6): 1065–1073

    Article  CAS  PubMed  Google Scholar 

  20. Tuncel M, Souvatzoglou M, Herrmann K et al. (2008) [(11)C]Choline positron emission tomography/computed tomography for staging and restaging of patients with advanced prostate cancer. Nucl Med Biol 35(6): 689–695

    Article  CAS  PubMed  Google Scholar 

  21. Reske SN, Blumstein NM, Glatting G (2008) [11C]choline PET/CT imaging in occult local relapse of prostate cancer after radical prostatectomy. Eur J Nucl Med Mol Imaging 35(1): 9–17

    Article  PubMed  Google Scholar 

  22. de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ (2003) 11 C-choline positron emission tomography for the evaluation after treatment of localized prostate cancer. Eur Urol 44(1): 32–38, discussion 38–39

    Article  PubMed  Google Scholar 

  23. Heinisch M, Dirisamer A, Loidl W et al. (2006) Positron emission tomography/computed tomography with F-18-fluorocholine for restaging of prostate cancer patients: meaningful at PSA < 5 ng/ml? Mol Imaging Biol 8(1): 43–48

    Article  PubMed  Google Scholar 

  24. Picchio M, Messa C, Landoni C et al. (2003) Value of [11C]choline- positron emission tomography for re-staging prostate cancer: a comparison with [18F]fluorodeoxyglucose-positron emission tomography. J Urol 169(4): 1337–1340

    Article  CAS  PubMed  Google Scholar 

  25. Schmid DT, John H, Zweifel R et al. (2005) Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology 235(2): 623–628

    Article  PubMed  Google Scholar 

  26. Yoshida S, Nakagomi K, Goto S, Futatsubashi M, Torizuka T (2005) 11 C-choline positron emission tomography in prostate cancer: primary staging and recurrent site staging. Urol Int 74(3): 214–220

    Article  CAS  PubMed  Google Scholar 

  27. Scattoni V, Picchio M, Suardi N et al. (2007) Detection of lymphnode metastases with integrated [11C]choline PET/CT in patients with PSA failure after radical retropubic prostatectomy: results confirmed by open pelvic-retroperitoneal lymphadenectomy. Eur Urol 52(2): 423–429

    Article  PubMed  Google Scholar 

  28. Rinnab L, Mottaghy FM, Simon J et al. (2008) [11C]Choline PET/CT for targeted salvage lymph node dissection in patients with biochemical recurrence after primary curative therapy for prostate cancer. Preliminary results of a prospective study. Urol Int 81(2): 191–197

    Article  PubMed  Google Scholar 

  29. Krause BJ, Souvatzoglou M, Tuncel M et al. (2008) The detection rate of [11C]choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 35(1): 18–23

    Article  CAS  PubMed  Google Scholar 

  30. Castellucci P, Fuccio C, Nanni C et al. (2009) Influence of trigger PSA and PSA kinetics on 11 C-Choline PET/CT detection rate in patients with biochemical relapse after radical prostatectomy. J Nucl Med 50(9): 1394–1400

    Article  PubMed  CAS  Google Scholar 

  31. Husarik DB, Miralbell R, Dubs M et al. (2008) Evaluation of [(18) F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging 35(2): 253–263

    Article  PubMed  Google Scholar 

  32. Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64(6): 479–489

    Article  CAS  PubMed  Google Scholar 

  33. Riemann B, Stogbauer F, Kopka K et al. (1999) Kinetics of 3-[(123)I] iodo-l-alpha-methyltyrosine transport in rat C6 glioma cells. Eur J Nucl Med 26(10): 1274–1278

    CAS  PubMed  Google Scholar 

  34. Langen KJ, Muhlensiepen H, Holschbach M, Hautzel H, Jansen P, Coenen HH (2000) Transport mechanisms of 3-[123I]iodo-alpha- methyl-L-tyrosine in a human glioma cell line: comparison with [3H]methyl]-L-methionine. J Nucl Med 41(7): 1250–1255

    CAS  PubMed  Google Scholar 

  35. Langen KJ, Jarosch M, Muhlensiepen H et al. (2003) Comparison of fluorotyrosines and methionine uptake in F98 rat gliomas. Nucl Med Biol 30(5): 501–508

    Article  CAS  PubMed  Google Scholar 

  36. Heiss P, Mayer S, Herz M, Wester HJ, Schwaiger M, Senekowitsch- Schmidtke R (1999) Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)-L-tyrosine in vitro and in vivo. J Nucl Med 40(8): 1367–1373

    CAS  PubMed  Google Scholar 

  37. Weber WA, Wester HJ, Grosu AL et al. (2000) O-(2-[18F]fluoroethyl)- L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 27(5): 542–549

    Article  CAS  PubMed  Google Scholar 

  38. Pauleit D, Floeth F, Hamacher K et al. (2005) O-(2-[18F]fluoroethyl)- L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128(Pt 3): 678–687

    Article  PubMed  Google Scholar 

  39. Weckesser M, Langen KJ, Rickert CH et al. (2005) O-(2-[18F]fluorethyl)- L-tyrosine PET in the clinical evaluation of primary brain tumours. Eur J Nucl Med Mol Imaging 32(4): 422–429

    Article  CAS  PubMed  Google Scholar 

  40. Popperl G, Kreth FW, Herms J et al. (2006) Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods? J Nucl Med 47(3): 393–403

    PubMed  Google Scholar 

  41. Nelson SJ (1999) Imaging of brain tumors after therapy. Neuroimaging Clin N Am 9(4):801–819

    CAS  PubMed  Google Scholar 

  42. Leeds NE, Jackson EF (1994) Current imaging techniques for the evaluation of brain neoplasms. Curr Opin Oncol 6(3): 254–261

    Article  CAS  PubMed  Google Scholar 

  43. Byrne TN (1994) Imaging of gliomas. Semin Oncol 21(2): 162–171

    CAS  PubMed  Google Scholar 

  44. Popperl G, Gotz C, Rachinger W, Gildehaus FJ, Tonn JC, Tatsch K (2004) Value of O-(2-[18F]fluoroethyl)- L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 31(11): 1464–1470

    Article  PubMed  CAS  Google Scholar 

  45. Rachinger W, Goetz C, Popperl G et al. (2005) Positron emission tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 57(3): 505–511, discussion 505–511

    Article  PubMed  Google Scholar 

  46. Popperl G, Gotz C, Rachinger W et al. (2006) Serial O-(2-[(18)F] fluoroethyl)-L: -tyrosine PET for monitoring the effects of intracavitary radioimmunotherapy in patients with malignant glioma. Eur J Nucl Med Mol Imaging 33(7): 792–800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Popperl G, Goldbrunner R, Gildehaus FJ et al. (2005) O-(2-[18F] fluoroethyl)-L-tyrosine PET for monitoring the effects of convection- enhanced delivery of paclitaxel in patients with recurrent glioblastoma. Eur J Nucl Med Mol Imaging 32(9): 1018–1025

    Article  CAS  PubMed  Google Scholar 

  48. von Schulthess GK, Steinert HC, Hany TF (2006) Integrated PET/CT: current applications and future directions. Radiology 238(2): 405–422

    Article  Google Scholar 

  49. Barentsz J, Takahashi S, Oyen W et al. (2006) Commonly used imaging techniques for diagnosis and staging. J Clin Oncol 24(20): 3234–3244

    Article  CAS  PubMed  Google Scholar 

  50. Juweid ME, Cheson BD (2006) Positron-emission tomography and assessment of cancer therapy. The New England journal of medicine 354(5): 496–507

    Article  CAS  PubMed  Google Scholar 

  51. Herrmann K, Krause BJ, Bundschuh RA, Dechow T, Schwaiger M (2009) Monitoring response to therapeutic interventions in patients with cancer. Semin Nucl Med 39(3): 210–232

    Article  PubMed  Google Scholar 

  52. Shreve PD, Anzai Y, Wahl RL (1999) Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 19(1): 61–77, quiz 150–151

    Article  CAS  PubMed  Google Scholar 

  53. Kubota R, Kubota K, Yamada S, Tada M, Ido T, Tamahashi N (1994) Microautoradiographic study for the differentiation of intratumoral macrophages, granulation tissues and cancer cells by the dynamics of fluorine-18-fluorodeoxyglucose uptake. J Nucl Med 35(1): 104–112

    CAS  PubMed  Google Scholar 

  54. Wells P, Gunn RN, Alison M et al. (2002) Assessment of proliferation in vivo using 2-[(11)C]thymidine positron emission tomography in advanced intra-abdominal malignancies. Cancer Res 62(20): 5698–5702

    CAS  PubMed  Google Scholar 

  55. Shields AF, Grierson JR, Dohmen BM et al. (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nature medicine 4(11): 1334–1336

    Article  CAS  PubMed  Google Scholar 

  56. Machulla HJ, Blocher A, Kuntzsch M (2000) Simplified labeling approach for synthesizing 3’-deoxy-3’-[18F]fluorothymidine ([18F]FLT). J Radioanal Nucl Chem 243(3): 843–846

    Article  CAS  Google Scholar 

  57. Barthel H, Perumal M, Latigo J et al. (2005) The uptake of 3’- deoxy-3’-[18F]fluorothymidine into L5178Y tumours in vivo is dependent on thymidine kinase 1 protein levels. Eur J Nucl Med Mol Imaging 32(3): 257–263

    Article  CAS  PubMed  Google Scholar 

  58. Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL (2002) Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 43(9): 1210–1217

    CAS  PubMed  Google Scholar 

  59. Wagner M, Seitz U, Buck A et al. (2003) 3’-[18F]fluoro-3’-deoxythymidine ([18F]-FLT) as positron emission tomography tracer for imaging proliferation in a murine B-Cell lymphoma model and in the human disease. Cancer Res 63(10): 2681–2687

    CAS  PubMed  Google Scholar 

  60. Kenny LM, Vigushin DM, Al-Nahhas A et al. (2005) Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F]fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res 65(21): 10104–10112

    Article  CAS  PubMed  Google Scholar 

  61. Buck AK, Bommer M, Stilgenbauer S et al. (2006) Molecular imaging of proliferation in malignant lymphoma. Cancer Res 66(22): 11055–11061

    Article  CAS  PubMed  Google Scholar 

  62. Francis DL, Visvikis D, Costa DC et al. (2003) Potential impact of [18F]3’-deoxy-3’-fluorothymidine versus [18F]fluoro-2-deoxy-Dglucose in positron emission tomography for colorectal cancer. Eur J Nucl Med Mol Imaging 30(7): 988–994

    Article  CAS  PubMed  Google Scholar 

  63. Buck AK, Hetzel M, Schirrmeister H et al. (2005) Clinical relevance of imaging proliferative activity in lung nodules. Eur J Nucl Med Mol Imaging 32(5): 525–533

    Article  PubMed  Google Scholar 

  64. Seam P, Juweid ME, Cheson BD (2007) The role of FDG-PET scans in patients with lymphoma. Blood 110(10): 3507–3516

    Article  CAS  PubMed  Google Scholar 

  65. Blau M, Nagler W, Bender MA (1962) Fluorine-18: a new isotope for bone scanning. J Nucl Med 3:332–334

    CAS  PubMed  Google Scholar 

  66. Blake GM, Park-Holohan SJ, Cook GJ, Fogelman I (2001) Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med 31(1): 28–49

    Article  CAS  PubMed  Google Scholar 

  67. Cook GJ, Fogelman I (2000) The role of positron emission tomography in the management of bone metastases. Cancer 88(12 suppl): 2927–2933

    Article  CAS  PubMed  Google Scholar 

  68. Hawkins RA, Choi Y, Huang SC et al. (1992) Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J Nucl Med 33(5): 633–642

    CAS  PubMed  Google Scholar 

  69. Schiepers C, Nuyts J, Bormans G et al. (1997) Fluoride kinetics of the axial skeleton measured in vivo with fluorine-18-fluoride PET. J Nucl Med 38(12): 1970–1976

    CAS  PubMed  Google Scholar 

  70. Schirrmeister H, Glatting G, Hetzel J et al. (2001) Prospective evaluation of the clinical value of planar bone scans, SPECT, and (18)F-labeled NaF PET in newly diagnosed lung cancer. J Nucl Med 42(12): 1800–1804

    CAS  PubMed  Google Scholar 

  71. Cook GJ, Houston S, Rubens R, Maisey MN, Fogelman I (1998) Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 16(10): 3375–3379

    Article  CAS  PubMed  Google Scholar 

  72. Even-Sapir E, Metser U, Flusser G et al. (2004) Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med 45(2): 272–278

    PubMed  Google Scholar 

  73. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47(2): 287–297

    PubMed  Google Scholar 

  74. Kruger S, Buck AK, Mottaghy FM et al. (2009) Detection of bone metastases in patients with lung cancer: 99mTc-MDP planar bone scintigraphy, 18F-fluoride PET or 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging 36(11): 1807–1812

    Article  PubMed  Google Scholar 

  75. Langsteger W, Jorg L, Tausch C et al. (2002) [The value of F-18 fluorodeoxyglucose in positron emission tomography diagnosis of breast carcinoma]. Wien Med Wochenschr 152(11–12): 255–258

    Article  CAS  PubMed  Google Scholar 

  76. Uchida K, Nakajima H, Miyazaki T et al. (2009) Effects of alendronate on bone metabolism in glucocorticoid-induced osteoporosis measured by 18F-fluoride PET: a prospective study. J Nucl Med 50(11): 1808–1814

    Article  CAS  PubMed  Google Scholar 

  77. Langsteger W, Heinisch M, Fogelman I (2006) The role of fluorodeoxyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fluoride in bone imaging with emphasis on prostate and breast. Semin Nucl Med 36(1): 73–92

    Article  PubMed  Google Scholar 

  78. Becherer A, Karanikas G, Szabo M et al. (2003) Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur J Nucl Med Mol Imaging 30(11): 1561–1567

    Article  CAS  PubMed  Google Scholar 

  79. Chen W, Silverman DH, Delaloye S et al. (2006) 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 47(6): 904–911

    CAS  PubMed  Google Scholar 

  80. Becherer A, Szabo M, Karanikas G et al. (2004) Imaging of advanced neuroendocrine tumors with (18)F-FDOPA PET. J Nucl Med 45(7): 1161–1167

    CAS  PubMed  Google Scholar 

  81. Montravers F, Grahek D, Kerrou K et al. (2006) Can fluorodihydroxyphenylalanine PET replace somatostatin receptor scintigraphy in patients with digestive endocrine tumors? J Nucl Med 47(9): 1455–1462

    CAS  PubMed  Google Scholar 

  82. Kauhanen S, Seppanen M, Ovaska J et al. (2009) The clinical value of [18F]fluoro-dihydroxyphenylalanine positron emission tomography in primary diagnosis, staging, and restaging of neuroendocrine tumors. Endocr Relat Cancer 16(1): 255–265

    Article  CAS  PubMed  Google Scholar 

  83. Luster M, Karges W, Zeich K et al. (2009) Clinical value of (18) F-fluorodihydroxyphenylalanine positron emission tomography/computed tomography ((18)F-DOPA PET/CT) for detecting pheochromocytoma. Eur J Nucl Med Mol Imaging 37(3): 484–493

    Article  PubMed  Google Scholar 

  84. Hoegerle S, Altehoefer C, Ghanem N, Brink I, Moser E, Nitzsche E (2001) 18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur J Nucl Med 28(1): 64–71

    Article  CAS  PubMed  Google Scholar 

  85. Beheshti M, Pocher S, Vali R et al. (2009) The value of 18F-DOPA PET-CT in patients with medullary thyroid carcinoma: comparison with 18F-FDG PET-CT. Eur Radiol 19(6): 1425–1434

    Article  PubMed  Google Scholar 

  86. Scheidhauer K, Miederer M, Gaertner FC (2009) [PET-CT for neuroendocrine tumors and nuclear medicine therapy options]. Radiologe 49(3): 217–223

    Article  CAS  PubMed  Google Scholar 

  87. Reubi JC, Schar JC, Waser B et al. (2000) Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 27(3): 273–282

    Article  CAS  PubMed  Google Scholar 

  88. Antunes P, Ginj M, Zhang H et al. (2007) Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging 34(7): 982–993

    Article  CAS  PubMed  Google Scholar 

  89. Krause BJ, Beck R, Souvatzoglou M, Piert M (2006) PET and PET/CT studies of tumor tissue oxygenation. Q J Nucl Med Mol Imaging 50(1): 28–43

    CAS  PubMed  Google Scholar 

  90. Beer AJ, Schwaiger M (2008) Imaging of integrin alphavbeta3 expression. Cancer Metastasis Rev 27(4): 631–644

    Article  CAS  PubMed  Google Scholar 

  91. Zhang CC, Pavlicek A, Zhang Q, Lira ME, Painter CL, Yan Z, Zheng X, Lee NV, Ozeck M, Qiu M, Zong Q, Lappin PB, Wong A, Rejto PA, Smeal T, Christensen JG (2012) Biomarker and pharmacologic evaluation of the?-secretase inhibitor PF-03084014 in breast cancer models. Clin Cancer Res 18(18): 5008–5019

    Article  CAS  PubMed  Google Scholar 

  92. McKinley ET, Ayers GD, Smith RA, Saleh SA, Zhao P, Washington MK, Coffey RJ, Manning HC (2013) Limits of [18F]-FLT PET as a biomarker of proliferation in oncology. PLoS One 8(3): e58938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tehrani OS, Shields AF (2013) PET imaging of proliferation with pyrimidines. J Nucl Med 54(6): 903–912

    Article  CAS  PubMed  Google Scholar 

  94. Leonard JP, LaCasce AS, Smith MR, Noy A, Chirieac LR, Rodig SJ, Yu JQ, Vallabhajosula S, Schoder H, English P, Neuberg DS, Martin P, Millenson MM, Ely SA, Courtney R, Shaik N, Wilner KD, Randolph S, Van den Abbeele AD, Chen-Kiang SY, Yap JT, Shapiro GI (2012) Selective CDK4/6 inhibition with tumor responses by PD0332991 in patients with mantle cell lymphoma. Blood 119(20): 4597–4607

    Article  CAS  PubMed  Google Scholar 

  95. Nakajo M, Nakajo M, Jinguji M, Tani A, Kajiya Y, Tanabe H, Fukukura Y, Nakabeppu Y, Koriyama C (2013) Diagnosis of metastases from postoperative differentiated thyroid cancer: comparison between FDG and FLT PET/CT studies. Radiology 267(3): 891–901

    Article  PubMed  Google Scholar 

  96. Hoshikawa H, Mori T, Yamamoto Y, Kishino T, Fukumura T, Samukawa Y, Mori N, Nishiyama Y (2015) Prognostic value comparison between (18)F-FLT PET/CT and (18)F-FDG PET/CT volume-based metabolic parameters in patients with head and neck cancer. Clin Nucl Med 40(6): 464–468

    Article  PubMed  Google Scholar 

  97. Fischer DR (2013) Musculoskeletal imaging using fluoride PET. Semin Nucl Med 43(6):427–433

    Article  PubMed  Google Scholar 

  98. Hillner BE, Siegel BA, Hanna L, Duan F, Shields AF, Quinn B, Coleman RE (2014) Impact of (18)F-Fluoride PET on Intended Management of Patients with Cancers Other Than Prostate Cancer: Results from the National Oncologic PET Registry. J Nucl Med 55(7): 1054–1061

    Article  CAS  PubMed  Google Scholar 

  99. Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE, Abdalla EK, Fleming JB, Vauthey JN, Rashid A, Evans DB (2008) One hundred years after «carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol 20;26(18):3063–72

    Article  PubMed  Google Scholar 

  100. Lawrence B, Gustafsson BI, Chan A, Svejda B, Kidd M, Modlin IM (2011) The epidemiology of gastroenteropancreatic neuroendocrine tumors. Endocrinol Metab Clin North Am 40(1):1–18

    Article  PubMed  Google Scholar 

  101. Balogova S, Talbot JN, Nataf V, Michaud L, Huchet V, Kerrou K, Montravers F (2013) 18F-fluorodihydroxyphenylalanine vs other radiopharmaceuticals for imaging neuroendocrine tumours according to their type. Eur J Nucl Med Mol Imaging 40(6): 943–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Scheidhauer K, Miederer M, Gaertner FC (2009) PET-CT for neuroendocrine tumors and nuclear medicine therapy options. Radiologe 49(3): 217–23

    Article  CAS  PubMed  Google Scholar 

  103. Bangard M1 Behe M, Guhlke S, Otte R, Bender H, Maecke HR, Biersack HJ (2000) Detection of somatostatin receptor-positive tumours using the new 99mTc-tricine-HYNIC-D-Phe1-Tyr3- octreotide: first results in patients and comparison with 111In-DTPA-D-Phe1-octreotide. Eur J Nucl Med 27(6): 628–37

    Google Scholar 

  104. Virgolini I, Ambrosini V, Bomanji JB et al. (2010) Procedure guidelines for PET/CT tumour imaging with 68 Ga-DOTA-conjugated peptides: 68 Ga-DOTA-TOC, 68 Ga-DOTA-NOC, 68 Ga-DOTA-TATE. Eur J Nucl Med Mol Imaging 37: 2004–2010

    Article  PubMed  Google Scholar 

  105. Virgolini I, Ambrosini V, Bomanji JB et al. (2010) Procedure guidelines for PET/CT tumour imaging with 68 Ga-DOTA-conjugated peptides: 68 Ga-DOTA-TOC, 68 Ga-DOTA-NOC, 68 Ga-DOTA-TATE. Eur J Nucl Med Mol Imaging 37: 2004–2010

    Article  PubMed  Google Scholar 

  106. Mueller-Klieser W, Schlenger KH, Walenta S et al. (1991) Pathophysiological approaches to identifying tumor hypoxia in patients. Radiother Oncol 20 (Suppl 1): 21–28

    Article  PubMed  Google Scholar 

  107. Gaertner FC, Souvatzoglou M, Brix G, Beer AJ (2012) Imaging of hypoxia using PET and MRI. Curr Pharm Biotechnol 13(4): 552–70

    Article  CAS  PubMed  Google Scholar 

  108. Gaertner FC, Souvatzoglou M, Brix G, Beer AJ (2012) Imaging of hypoxia using PET and MRI. Curr Pharm Biotechnol 13(4): 552–70

    Article  CAS  PubMed  Google Scholar 

  109. Prekeges JL, Rasey JS, Grunbaum Z, Krohn KH (1991) Reduction of fluoromisonidazole, a new imaging agent for hypoxia. Biochem Pharmacol 42(12): 2387–95

    Article  CAS  PubMed  Google Scholar 

  110. Abolmaali N, Haase R, Koch A, Zips D, Steinbach J, Baumann M, Kotzerke J, Zophel K (2011) Two or four hour [18F]FMISO-PET in HNSCC. When is the contrast best? Nuklearmedizin 50(1):22–7. doi:10.3413/nukmed-00328-10-07

    Article  CAS  PubMed  Google Scholar 

  111. Kumar P, Stypinski D, Xia H et al. (1999) Fluoroazomycin arabinoside (FAZA): synthesis, 2 H and 3 H-labelling and preliminary biological evaluation of a novel 2-nitroimidazole marker of tissue hypoxia. J. Label Comp. Radiopharm 42(1): 3–16

    Article  CAS  Google Scholar 

  112. Gronroos T, Bentzen L, Marjamaki P et al. (2004) Comparison of the biodistribution of two hypoxia markers [18F]FETNIM and [18F]FMISO in an experimental mammary carcinoma. Eur J Nucl Med Mol Imaging 31(4): 513–520

    Article  PubMed  CAS  Google Scholar 

  113. Fujibayashi Y, Taniuchi H, Yonekura Y et al. (1997) Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential. J Nucl Med 38(7): 1155–1160

    CAS  PubMed  Google Scholar 

  114. Holland JP, Lewis JS, Dehdashti F (2009) Assessing tumor hypoxia by positron emission tomography with Cu-ATSM. Q J Nucl Med Mol Imaging 53(2): 193–200

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Holland JP, Lewis JS, Dehdashti F (2009) Assessing tumor hypoxia by positron emission tomography with Cu-ATSM. Q J Nucl Med Mol Imaging 53(2): 193–200

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Nehmeh SA, Lee NY, Schroder H et al. (2008) Reproducibility of intratumor distribution of (18)F-fluoromisonidazole in head and neck cancer. Int J Radiat Oncol Biol Phys 70(1): 235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gaertner FC, Souvatzoglou M, Brix G, Beer AJ (2012). Imaging of hypoxia using PET and MRI. Curr Pharm Biotechnol 13(4): 552–70

    Article  CAS  PubMed  Google Scholar 

  118. Baskin A, Buchegger F, Seimbille Y, Ratib O, Garibotto V (2015) PET molecular imaging of hypoxia in ischemic stroke: an update. Curr Vasc Pharmacol 13(2): 209–17

    Article  CAS  PubMed  Google Scholar 

  119. Handley MG, Medina RA, Nagel E, Blower PJ, Southworth R (2011) PET imaging of cardiac hypoxia: opportunities and challenges. J Mol Cell Cardiol 51(5):640–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gaertner FC, Schwaiger M, Beer AJ (2010) Molecular imaging of avs3 expression in cancer patients. Q J Nucl Med Mol Imaging 54(3):309–26

    CAS  PubMed  Google Scholar 

  121. Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238(4826): 491–7

    Article  CAS  PubMed  Google Scholar 

  122. Haubner R, Wester HJ, Reuning U, Senekowitsch-Schmidtke R, Diefenbach B, Kessler H et al. (1999) Radiolabeled alpha(v)beta3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med 40: 1061–71

    CAS  PubMed  Google Scholar 

  123. Haubner R, Wester HJ, Burkhart F, Senekowitsch-Schmidtke R, Weber W, Goodman SL, et al. (2001) Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med 42(2): 326–36

    CAS  PubMed  Google Scholar 

  124. Haubner R, Wester HJ, Weber WA, Mang C, Ziegler SI, Goodman SL, et al. (2001) Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 61(5): 1781–5

    CAS  PubMed  Google Scholar 

  125. Haubner R, Kuhnast B, Mang C, Weber WA, Kessler H, Wester HJ, et al. (2004) [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug Chem 15(1): 61–9

    Article  CAS  PubMed  Google Scholar 

  126. Gaertner FC, Kessler H, Wester HJ, Schwaiger M, Beer AJ (2012) Radiolabelled RGD peptides for imaging and therapy. Eur J Nucl Med Mol ImagingSuppl 1:S126–38

    Article  CAS  Google Scholar 

  127. Haubner R, Kuhnast B, Mang C, Weber WA, Kessler H, Wester HJ, et al. (2004) [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug Chem 15(1): 61–9

    Article  CAS  PubMed  Google Scholar 

  128. Kenny LM, Coombes RC, Oulie I, Contractor KB, Miller M, Spinks TJ, et al. (2008) Phase I trial of the positron-emitting Arg-Gly- Asp (RGD) peptide radioligand 18F-AH111585 in breast cancer patients. J Nucl Med 49(6):879–86

    Article  PubMed  Google Scholar 

  129. Gaertner FC, Kessler H, Wester HJ, Schwaiger M, Beer AJ (2012) Radiolabelled RGD peptides for imaging and therapy. Eur J Nucl Med Mol ImagingSuppl 1: S126–38

    Article  CAS  Google Scholar 

  130. Kolb H, Walsh J, Liang Q, Zhao T, Gao D, Secrest J, et al. (2009) 18F-RGD-K5: a cyclic triazole-bearing RGD peptide for imaging integrin avß3 expression in vivo. J Nucl Med 50(2): 329

    Article  Google Scholar 

  131. Cho HJ, Lee DL, Park JY, Yun M, Kang WJ, Walsh JC, et al. (2009) First in human evaluation of a newly developed PET tracer, 18F-RGD-K5 in patients with breast cancer: comparison with 18F-FDG uptake pat- tern and microvessel density. J Nucl Med 50(2): 1910

    CAS  Google Scholar 

  132. Fanti S, Farsad M, Mansi L (2010) PET-CT beyond FDG: a quick guide to image interpretation. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  133. Knetsch PA, Petrik M, Griessinger CM, Rangger C, Fani M, Kesenheimer C, et al. [68Ga]NODAGA-RGD for imaging alphav- beta3 integrin expression. Eur J Nucl Med Mol Imaging 2011; 38 (7):1303–12

    Article  CAS  PubMed  Google Scholar 

  134. Gaertner FC, Kessler H, Wester HJ, Schwaiger M, Beer AJ (2012) Radiolabelled RGD peptides for imaging and therapy. Eur J Nucl Med Mol ImagingSuppl 1: S126–38

    Article  CAS  Google Scholar 

  135. Afshar-Oromieh A, Zechmann CM, Malcher A, Eder M, Eisenhut M, Linhart HG, Holland-Letz T, Hadaschik BA, Giesel FL, Debus J, Haberkorn U (2014) Comparison of PET imaging with a (68) Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 41(1): 11–20

    Article  CAS  PubMed  Google Scholar 

  136. Afshar-Oromieh A, Avtzi E, Giesel FL, Holland-Letz T, Linhart HG, Eder M, Eisenhut M, Boxler S, Hadaschik BA, Kratochwil C, Weichert W, Kopka K, Debus J, Haberkorn U (2015) The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 42(2): 197–209

    Article  CAS  PubMed  Google Scholar 

  137. Eiber M, Maurer T, Souvatzoglou M, Beer AJ, Ruffani A, Haller B, Graner FP, Kubler H, Haberhorn U, Eisenhut M, Wester HJ, Gschwend JE, Schwaiger M (2015) Evaluation of Hybrid 68 Ga-PSMA Ligand PET/CT in 248 Patients with Biochemical Recurrence After Radical Prostatectomy. J Nucl Med 56(5): 668–74

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krause, B., Gärtner, F., Herrmann, K., Hertel, A. (2016). Molekulare Onkologie. In: Mohnike, W., Hör, G., Hertel, A., Schelbert, H. (eds) PET/CT-Atlas. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48842-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48842-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48841-6

  • Online ISBN: 978-3-662-48842-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics