Skip to main content

PET/CT in der Strahlentherapie

  • Chapter
PET/CT-Atlas

Zusammenfassung

Die Strahlentherapie ist neben Chemotherapie und Operation elementarer Baustein für die Behandlung onkologischer Patienten. In den letzten Jahren hat sich diese erheblich gewandelt: Mit modernen Konzepten bietet sie sowohl eine Steigerung der Tumorkontrolle als auch eine Reduzierung von Nebenwirkungen. Dies wird v. a. erreicht durch die Anwendung der IMRT und deren Innovationen mit VMAT und Tomotherapie. Die Anwendung hochpräziser Bestrahlungstechniken setzt jedoch voraus, dass eine ebenso exakte Information zur Tumorausbreitung vorliegt. Die Verknüpfung der CT-Planung mit MRT und PET hat hier eine neue Grundlage geschaffen. Zusätzlich zur technischen Einbindung der CT-basierten Hybridbildgebung erlauben die aktuellen Entwicklungen in der molekularen Bildgebung über FDG hinaus mit immer spezifischeren Tracern (PSMA-Ligand, FET, F-MISO) die unmittelbare Integration von Tumorbiologie einschließlich Hypoxie und Proliferation in die Bestrahlungsplanung. Dieser Artikel stellt die Grundlagen sowie die praktische Umsetzung in den Einrichtungen der Autoren dar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Cox JD, Azarnia N, Byhardt RW et al. (1990) A randomized phase I/II trial of hyperfractionated radiation therapy with total doses of 60.0 Gy to 79.2 Gy: Possible survival benefit with greater than or equal to 69.6 Gy in favorable patients with Radiation Therapy Oncology Group stage III non-small-cell lung carcinoma: Report of Radiation Therapy Oncology Group 83–11. J Clin Oncol 8: 1543–1555

    Article  CAS  PubMed  Google Scholar 

  2. Hanks GE, Hanlon AL, Schultheiss TE et al. (1998) Dose escalation with 3D conformal treatment: Five year outcomes, treatment optimization, and future directions. Int J Radiat Oncol Biol Phys 41: 501–510

    Article  CAS  PubMed  Google Scholar 

  3. Okunieff P, Morgan D, Niemierko A, Suit HD (1995) Radiation dose-response of human tumors. Int J Radiat Oncol Biol Phys 32: 1227–1237

    Article  CAS  PubMed  Google Scholar 

  4. Willner J, Baier K, Caragiani E, Tschammler A, Flentje M (2002) Dose, volume, and tumor control prediction in primary radiotherapy of non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 52(2): 382–289

    Article  PubMed  Google Scholar 

  5. Onishi H, Araki T, Shirato H, Nagata Y, Hiraoka M, Gomi K, Yamashita T, Niibe Y, Karasawa K, Hayakawa K, Takai Y, Kimura T, Hirokawa Y, Takeda A, Ouchi A, Hareyama M, Kokubo M, Hara R, Itami J, Yamada K (2004) Stereotactic hypofractionated highdose irradiation for stage I nonsmall cell lung carcinoma: clinical outcomes in 245 subjects in a Japanese multiinstitutional study. Cancer 101(7): 1623–1631

    Article  PubMed  Google Scholar 

  6. Holthusen H (1936) Erfahrungen über die Verträglichkeitsgrenzen für Röntgenstrahlen und deren Nutzanwendung zur Verhütung von Schäden. Strahlentherapie 57: 254–268

    Google Scholar 

  7. International Comission on Radiation Units and Measurements (1993) ICRU Report 50. Prescribing, recording and reporting photon beamtherapy

    Google Scholar 

  8. International Comission on Radiation Units and Measurements (1999) ICRU Report 62. Prescribing, recording and reporting photon beamtherapy. Supplement to ICRU Report 50

    Google Scholar 

  9. Ling CC, Humm J, Larson S et al. (2000) Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 47: 551–560

    Article  CAS  PubMed  Google Scholar 

  10. Grosu AL, Piert M, Weber WA et al. (2005) Positron emission tomography for radiation treatment planning. Strahlenther Onkol 181: 483–499

    Article  PubMed  Google Scholar 

  11. Grosu AL, Weber WA, Astner ST et al. (2006) 11 C-methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy? Int J Radiat Oncol Biol Phys 66: 339–344

    Article  CAS  PubMed  Google Scholar 

  12. Leong T, Everitt C, Yuen K et al. (2006) A prospective study to evaluate the impact of FDG-PET on CT-based radiotherapy treatment planning for oesophageal cancer. Radiother Oncol 78: 254–261

    Article  PubMed  Google Scholar 

  13. Nestle U, Kremp S, Grosu AL (2006) Practical integration of [18F]-FDG-PET and PET/CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): The technical basis, ICRU-target volumes, problems, perspectives. Radiother Oncol 81: 209–225

    Article  CAS  PubMed  Google Scholar 

  14. Riegel AC, Berson AM, Destian S et al. (2006) Variability of gross tumor volume delineation in head-and-neck cancer using CT and PET/CT fusion. Int J Radiat Oncol Biol Phys 65: 726–732

    Article  PubMed  Google Scholar 

  15. Schütze C, Bergmann R, Yaromina A et al. (2007) Effect of increase of radiation dose on local control relates to pre-treatment FDG uptake in FaDu tumours in nude mice. Radiother Oncol 83: 311–315

    Article  PubMed  CAS  Google Scholar 

  16. Wüllrich K, Gabrys D, Hofheinz F et al. (2007) Bewertung der FDG-Aufnahme in Abhängigkeit von Proliferation und Hypoxie: Untersuchung in 2 humanen Tumormodellen auf Nacktmäusen mit PET, Autoradiographie und funktioneller Histologie. Proceedings des Symposiums Experimentelle Strahlentherapie und Klinische Strahlenbiologie in Dresden, 01.–03. März 2007: 41–45

    Google Scholar 

  17. Eschmann SM, Paulsen F, Reimold M et al. (2005) Prognostic impact of hypoxia imaging with 18F-misonidazole PET in nonsmall cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med 46: 253–260

    PubMed  Google Scholar 

  18. Nordsmark M, Overgaard J (2000) A confirmatory prognostic study on oxygenation status and loco-regional control in advanced head and neck squamous cell carcinoma treated by radiation therapy. Radiother Oncol 57: 39–43

    Article  CAS  PubMed  Google Scholar 

  19. Rischin D, Hicks RJ, Fisher R et al. (2006) Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: A substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J Clin Oncol 24: 2098–2104

    Article  PubMed  Google Scholar 

  20. Nestle U, Kremp S, Schaefer-Schuler A et al. (2005) Comparison of different methods for delineation of 18F-FDG-PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. J Nucl Med 46: 1342–1348

    PubMed  Google Scholar 

  21. van Baardwijk A, Bosmans G, Boersma L et al. (2007) PET-CTbased auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int J Radiat Oncol Biol Phys 68: 771–778

    Article  PubMed  Google Scholar 

  22. Thompson G, Mills SJ, Coope DJ, O’Connor JP, Jackson A (2011) Imaging biomarkers of angiogenesis and the microvascular environment in cerebral tumours. Br J Radiol 84 Spec No 2: S127–S144

    Google Scholar 

  23. Brodbelt A (2011) Clinical applications of imaging biomarkers. Part 2. The neurosurgeon’s perspective. Br J Radiol 84 (Spec No 2): S205–S208

    Google Scholar 

  24. Shenoy A (2011) Clinical applications of imaging biomarkers. Part 3. The neuro-oncologist’s perspective. Br J Radiol 84 (Spec Iss 2): S209–S212

    Google Scholar 

  25. Braun V, Dempf S, Weller R, Reske SN, Schachenmayr W, Richter HP (2002) Cranial neuronavigation with direct integration of (11)C methionine positron emission tomography (PET) data—Results of a pilot study in 32 surgical cases. Acta Neurochir 144: 777–782

    Article  CAS  PubMed  Google Scholar 

  26. Herholz K, Hölzer T, Bauer B, Schröder R, Voges J, Ernestus RI, Mendoza G, Weber-Luxenburger G, Löttgen J, Thiel A, Wienhard K, Heiss WD (1998) 11 C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 50: 1316–1322

    Article  CAS  PubMed  Google Scholar 

  27. Bergström M, Collins VP, Ehrin E et al. (1983) Discrepancies in brain tumor extent as shown by computed tomography an positron emission tomography using [68Ga]EDTA, [11C]glucose, and [11C]methionine. J Comput Assist Tomogr 7: 1062–1066

    Article  PubMed  Google Scholar 

  28. Mosskin MEK, Hindmarsh T, Holst H et al. (1989) Positron emission tomography compared withmagnetic resonance imaging and computed tomography in supratentorial gliomas using multiple stereotactic biopsies as reference. Acta Radiol 30: 225–232

    Article  CAS  PubMed  Google Scholar 

  29. Ogawa T, Shishido F, Kanno I et al. (1993) Cerebral glioma: evaluation with methionine PET. Radiology 186: 45–53

    Article  CAS  PubMed  Google Scholar 

  30. Weber WA, Wester HJ, Grosu AL, Herz M, Dzewas B, Feldmann HJ, Molls M, Stöcklin G, Schwaiger M (2000) O-(2-[18F] fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: Initial results of a comparative study. Eur J Nucl Med 27: 542–549

    Article  CAS  PubMed  Google Scholar 

  31. Pauleit D, Floeth F, Hamacher K, Riemenschneider MJ, Reifenberger G, Müller HW, Zilles K, Coenen HH, Langen KJ (2005) O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128: 678–687

    Article  PubMed  Google Scholar 

  32. Rachinger W, Goetz C, Pöpperl G, Gildehaus FJ, Kreth FW, Holtmannspötter M, Herms J, Koch W, Tatsch K, Tonn JC (2005) Positron emission tomography with O-(2-[18F]fluoroethyl)-Ltyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 57: 505–511

    Article  PubMed  Google Scholar 

  33. Beuthien-Baumann B, Bredow J, Burchert W, Füchtner F, Bergmann R, Alheit HD, Reiss G, Hliscs R, Steinmeier R, Franke WG, Johannsen B, Kotzerke J (2003) 3-O-methyl-6-[18F]fluoro-LDOPA and its evaluation in brain tumor imaging. Eur J Nucl Med Mol Imaging 30: 1004–1008

    Article  CAS  PubMed  Google Scholar 

  34. Grosu AL, Lachner R, Wiedenmann N, Stärk S, Thamm R, Kneschaurek P, Schwaiger M, Molls M, Weber WA (2003) Validation of a method for automatic image fusion (BrainLAB System) of CT data and 11 C-methionine-PET data for stereotactic radiotherapy using a LINAC: First clinical experience. Int J Radiat Oncol Biol Phys 56: 1450–1463

    Article  PubMed  Google Scholar 

  35. Grosu AL, Weber WA, Riedel E, Jeremic B, Nieder C, Franz M, Gumprecht H, Jaeger R, Schwaiger M, Molls M (2005) L-(methyl-11 C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int J Radiat Oncol Biol Phys 63: 64–74

    Article  CAS  PubMed  Google Scholar 

  36. Grosu AL, Weber WA, Franz M, Stärk S, Piert M, Thamm R, Gumprecht H, Schwaiger M, Molls M, Nieder C (2005) Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 63: 511–519

    Article  CAS  PubMed  Google Scholar 

  37. Grosu AL, Weber WA, Astner ST, Adam M, Krause BJ, Schwaiger M, Molls M, Nieder C (2006) 11 C-methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 66: 339–344

    Article  CAS  PubMed  Google Scholar 

  38. Henze M, Schuhmacher J, Hipp P, Kowalski J, Becker DW, Doll J, Mäcke HR, Hofmann M, Debus J, Haberkorn U (2001) PET imaging of somatostatin receptors using [68 GA]DOTA-D-Phe1-Tyr3- octreotide: First results in patients with meningiomas. J Nucl Med 42: 1053–1056

    CAS  PubMed  Google Scholar 

  39. Milker-Zabel S, Zabel-du Bois A, Henze M et al. (2006) Improved target volume definition for fractionated stereotactic radiotherapy in patients with intracranial meningiomas by correlation of CT, MRI, and [68Ga]-DOTATOC-PET. Int J Radiat Oncol Biol Phys 65: 222–227

    Article  PubMed  Google Scholar 

  40. Syed R, Bomanji JB, Nagabhushan N et al. (2005) Impact of combined (18)F-FDG PET/CT in head and neck tumours. Brit J Cancer 92: 1046–1050

    Article  CAS  Google Scholar 

  41. Branstetter BF 4th, Blodgett TM, Zimmer LA et al. (2005) Head and neck malignancy: Is PET/CT more accurate than PET or CT alone? Radiology 235: 580–586

    Google Scholar 

  42. Schoder H, Yeung HW, Gonen M et al. (2004) Head and neck cancer: clinical usefulness and accurancy of PET/CT image fusion. Radiology 231: 65–72

    Article  PubMed  Google Scholar 

  43. Menda Y, Graham MM (2005) Update on 18F-fluorodeoxyglucose/positron emission tomography and positron emission tomography/computed tomography imaging of squamous head and neck cancers. Semin Nucl Med 35: 214–219

    Article  PubMed  Google Scholar 

  44. Yao M, Smith RB, Graham MM et al. (2005) The role of FDG PET in management of neck metastasis from head-and neck-cancer after definitive radiation treatment. Int J Radiat Oncol Biol Phys 63: 991–999

    Article  PubMed  Google Scholar 

  45. Heron DE, Andrade RS, Flickinger JC et al. (2004) Hybrid PET-CT simulation for radiation treatment planning in head and neck cancers: A brief technical report. Int J Radiat Oncol Biol Phys 60: 1419–1424

    Article  PubMed  Google Scholar 

  46. Hyde NC, Prvulovich E, Newman L et al. (2003) A new approach to pre-treatment assessment of the N0 neck in oral squamous cell carcinoma: The role of sentine node biopsy and positron emission tomography. Oral Oncol 39: 350–360

    Article  CAS  PubMed  Google Scholar 

  47. Stoeckli SJ, Steinert H, Pfaltz M et al. (2002) Is there a role for positron emission tomography with 18F-fluorodeoxyglucose in the initial staging of nodal negative oral and oropharyngeal squamous cell carcinoma? Head Neck 24: 345–349

    Article  PubMed  Google Scholar 

  48. Stoeckli SJ, Mosna-Firlejczyk K, Goerres GW (2003) Lymph node metastasis of squamous cell carcinoma from an unknown primary: Impact of positron emission tomography. Eur J Nucl Med Mol Imaging 30: 411–416

    Article  PubMed  Google Scholar 

  49. Civantos FJ, Gomez C, Duque C et al. (2003) Sentinel node biopsy in oral cavity cancer: Correlation with PET scan and immunohistochemistry. Head Neck 25: 1–9

    Article  PubMed  Google Scholar 

  50. Schmid DT, Stoeckli SJ, Bandhauer F et al. (2003) Impact of positron emission tomography on the initial staging and therapy in locoregional advanced squamous cell carcinoma of the head and neck. Laryngoscope 113: 888–891

    Article  PubMed  Google Scholar 

  51. Koshy M, Paulino AC, Howell R et al. (2005) F-18 FDG PET-CT fusion in radiotherapy treatment planning for head and neck cancer. Head Neck 27: 494–502

    Article  PubMed  Google Scholar 

  52. Paulino AC, Koshy M, Howell R et al. (2005) Comparison of CT- and FDG-PET-defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys 61: 1385–1392

    Article  PubMed  Google Scholar 

  53. Schechter NR, Gillenwater AM, Byers RM et al. (2001) Can positron emission tomography improve the quality of care for head-and-neck cancer patients? Int J Radiat Oncol Biol Phys 51: 4–9

    Article  CAS  PubMed  Google Scholar 

  54. Wong RJ, Lin DT, Schoder H et al. (2002) Diagnostic and prognostic value of [(18)F]fluorodeoxyglucose positron emission tomography for recurrent head and neck squamous cell carcinoma. J Clin Oncol 20: 4199–4208

    Article  CAS  PubMed  Google Scholar 

  55. Lowe VJ, Boyd JH, Dunphy FR et al. (2000) Surveillance for recurrent head and neck cancer using positron emission tomography. J Clin Oncol 18: 651–658

    Article  CAS  PubMed  Google Scholar 

  56. Paulino AC, Thorstad WL, Fox T (2003) Role of fusion in radiotherapy treatment planning. Semin Nucl Med 33: 238–243

    Article  PubMed  Google Scholar 

  57. Andrade RS, Heron DE, Degirmenci B et al. (2006) Posttreatment assessment of response using FDG-PET/CT for patients treated with definitive radiation therapy for head and neck cancers. Int J Radiat Oncol Biol Phys 65: 1315–1322

    Article  PubMed  Google Scholar 

  58. Andrade RS, Heron DE, Filho PAA et al. (2006) P071 Assessment of response using Fluorodeoxyglucose F18 positron emission tomography and computed tomography to evaluate patients with head and neck cancer after definitive radiation therapy: Preliminary results. Arch Otolaryngol Head Neck Surg 132(8): 879–880

    Article  Google Scholar 

  59. Koike I, Ohmura M, Hata M et al. (2003) FDG-PET scanning alter radiation can predict tumor regrowth three months later. Int J Radiat Oncol Biol Phys 57: 1231–1238

    Article  PubMed  Google Scholar 

  60. Gould MK, Maclean CC, Kuschner WG et al. (2001) Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: A meta-analysis. JAMA 285: 914–924

    Article  CAS  PubMed  Google Scholar 

  61. Gould MK, Kuschner WG, Rydzak CE et al. (2003) Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer. A meta-analysis. Ann Intern Med 139: 879–892

    Article  PubMed  Google Scholar 

  62. Schmuecking M, Schneider CP, Soeldner J et al. (2005) What is the role of F-18 PET within randomized multicenter clinical trials for multimodality treatment of non-small cell lung cancer stage III? Proc ASCO J Clin Oncol 23: 7182

    Article  CAS  Google Scholar 

  63. Bradley J, Thorstad WL, Mutic S et al. (2004) Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 59: 78–86

    Article  PubMed  Google Scholar 

  64. Lavrenkov K, Partridge M, Cook G et al. (2005) Positron emission tomography for target volume definition in the treatment of non-small cell lung cancer. Radiother Oncol 77: 1–4

    Article  PubMed  Google Scholar 

  65. Ashamalla H, Rafla S, Parikh K et al. (2005) The contribution of integrated PET-CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer. Int J Radiat Oncol Biol Phys 63: 1016–1023

    Article  PubMed  Google Scholar 

  66. Caldwell CB, Mah K, Ung YC et al. (2001) Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: The impact of 18FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys 51: 923–931

    Article  CAS  PubMed  Google Scholar 

  67. Pieterman RM, Que TH, Elsinga PH et al. (2002) Comparison of (11)C-choline and (18)F-FDG PET in primary diagnosis and staging of patients with thoracic cancer. J Nucl Med 43: 167–172

    PubMed  Google Scholar 

  68. Pieterman RM, van Putten JW, Meuzelaar JJ et al. (2000) Preoperative staging of non-small-cell lung cancer with positronemission tomography. N Engl J Med 343: 254–261

    Article  CAS  PubMed  Google Scholar 

  69. De Ruysscher D, Wanders S, Minken A et al. (2005) Effects of radiotherapy planning with a dedicated combined PET-CT-simulator of patients with non-small cell lung cancer on dose limiting normal tissues and radiation dose-escalation: A planning study. Radiother Oncol 77: 5–10

    Article  PubMed  Google Scholar 

  70. Holloway CL, Robinson D, Murray B et al. (2004) Results of a phase I study to dose escalate using intensity modulated radiotherapy guided by combined PET/CT imaging with induction chemotherapy for patients with non-small cell lung cancer. Radiother Oncol 73: 285–287

    Article  PubMed  Google Scholar 

  71. De Ruysscher D, Wanders S, van Haren E et al. (2005) Selective mediastinal node irradiation based on FDG-PET scan data in patients with nonsmall-cell lung cancer: A prospective clinical study. Int J Radiat Oncol Biol Phys 62: 988–994

    Article  PubMed  Google Scholar 

  72. Rosenzweig KE, Sura S, Jackson A, Yorke E (2007) Involved-Field Radiation Therapy for Inoperable Non Small-Cell Lung Cancer. J Clin Oncol 25: 5557–5561

    Article  PubMed  Google Scholar 

  73. Yuan S, Yu J, Sun X, Li M (2006) Three-dimensional conformal involved-field radiotherapy for stage III non-small cell lung cancer. J Clin Oncol, ASCO Annual Meeting Proceedings 24(18 S): 7044

    Google Scholar 

  74. Griesinger F, Pverbeck T, Dorge B et al. (2005) Phase III induction therapy with docetaxel and carboplatin in NSCLC IIIA/IIIIB: FDG-PET response predicts overall and disease-free survival. J Clin Oncol, ASCO Annual Meeting Proceedings 23: 7184

    CAS  Google Scholar 

  75. Lardinois D, Weder W, Hany TF et al. (2003) Staging of non-smallcell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med: 2500–2507

    Google Scholar 

  76. Ilson DH (2006) Cancer of the gastroesophageal junction: combined modality therapy. Surg Oncol Clin N Am 15: 803–824

    Article  PubMed  Google Scholar 

  77. Bar-Shalom R, Guralnik L, Tsalic M et al. (2005) The additional value of PET/CT over PET in FDG imaging of oesophageal cancer. Eur J Nucl Med Mol Imaging 32: 918–924

    Article  PubMed  Google Scholar 

  78. Kato H, Miyazaki T, Nakajima M et al. (2005) The incremental effect of positron emission tomography on diagnostic accuracy in the initial staging of esophageal carcinoma. Cancer 103: 148–156

    Article  PubMed  Google Scholar 

  79. Moureau-Zabotto L, Touboul E, Lerouge D et al. (2005) Impact of CT and 18F-deoxyglucose positron emission tomography image fusion for conformal radiotherapy in esophageal carcinoma. Int J Radiat Oncol Biol Phys 63: 340–345

    Article  PubMed  Google Scholar 

  80. Gondi V, Bradley K, Mehta M et al. (2007) Impact of hybrid fluorodeoxyglucose positron-emission tomography/computed tomography on radiotherapy planning in esophageal and nonsmall- cell lung cancer. Int J Radiat Oncol Biol Phys 67: 187–195

    Article  PubMed  Google Scholar 

  81. Vriez O, Haustermans K, De Wever W et al. (2004) Is there a role for FDG-PET in radiotherapy planning in esophageal carcinoma? Radiother Oncol 73: 269–275

    Article  Google Scholar 

  82. Leong TEC, Yuen K (2004) A prospective study to evaluate the impact of coregistered PET/CT images on radiotherapy treatment planning for esophageal cancer [Abstract ASTRO 2004]. Int J Radiat Oncol Biol Phys 60: 139–140

    Article  Google Scholar 

  83. Konski A, Doss M, Milestone B et al. (2005) The integration of 18-fluorodeoxy-glucose positron emission tomography and endoscopic ultrasound in the treatment-planning process for esophageal carcinoma. Int J Radiat Oncol Biol Phys 61: 1123–1128

    Article  PubMed  Google Scholar 

  84. Munden RF, Macapinlac HA, Erasmus JJ (2006) Esophageal cancer: The role of integrated CT-PET in initial staging and response assessment after preoperative therapy. J Thorac Imaging 21: 137–145

    Article  PubMed  Google Scholar 

  85. Brink I, Hentschel M, Bley TA et al. (2004) Effects of neoadjuvant radio-chemotherapy on 18F-FDG-PET in esophageal carcinoma. Eur J Surg Oncol 30: 544–550

    Article  CAS  PubMed  Google Scholar 

  86. Bruzzi JF, Swisher SG, Truong MT et al. (2007) Detection of interval distant metastases: Clinical utility of integrated CT-PET imaging in patients with esophageal carcinoma after neoadjuvant therapy. Cancer 109: 125–134

    Article  PubMed  Google Scholar 

  87. Swisher SG, Maisch M, Erasmus JJ et al. (2004) Utility of PET, CT, and EUS to identify pathologic responders in esophageal cancer. Ann Thorac Surg 78: 1152–1160

    Article  PubMed  Google Scholar 

  88. Erasmus JJ, Munden RF, Troung MT et al. (2006) Preoperative chemo-radiation-induced ulceration in patients with esophageal cancer: A confounding factor in tumor response assessment in integrated computed tomographic-positron emission tomographic imaging. J Thorac Oncol 1: 478–486

    Article  PubMed  Google Scholar 

  89. Duong CP, Hicks RJ, Weih L et al. (2006) FDG-PET status following chemoradiotherapy provides high management impact and powerful prognostic stratification in oesophageal cancer. Eur J Nucl Med Mol Imaging 33: 770–778

    Article  PubMed  Google Scholar 

  90. Grigsby PW, Siegel BA, Dehdashti F et al. (2004) Posttherapy [18F] fluorodeoxyglucose positron emission tomography in carcinoma of the cervix: Response and outcome. J Clin Oncol 22: 2167–2171

    Article  PubMed  Google Scholar 

  91. Horowitz NS, Dehdashti F, Herzog TJ et al. (2004) Prospective evaluation of FDG PET for detecting pelvic para-aortic lymph node metastasis in uterine corpus cancer. Gynecol Oncol 95: 546–551

    Article  PubMed  Google Scholar 

  92. Rotman M, Pajak TF, Choi K et al. (1995) Prophylactic extendedfield irradiation of para-aortic lymph nodes in stages IIB and bulky IB and IIA cervical carcinomas. Ten-year treatment results of RTOG 79 – 20. JAMA 274: 387–393

    Article  CAS  PubMed  Google Scholar 

  93. Eifel PJ, Winter K, Morris M et al. (2004) Pelvic irradiation with concurrent chemotherapy versus pelvic and para-aortic irradiation for high-risk cervical cancer: An update of radiation therapy oncology group trial (RTOG) 90 – 01. J Clin Oncol 22: 872–880

    Article  PubMed  Google Scholar 

  94. Grigsby PW, Heydon K, Mutch DG et al. (2001) Long-term followup of RTOG 92 – 10: cervical cancer with positive para-aorctic lymph nodes. Int J Radiat Oncol Biol Phys 51: 982–987

    Article  CAS  PubMed  Google Scholar 

  95. Beriwal S, GN, Heron DE et al. (2007) Early clinical outcome with concurrent chemotherapy and extended-field intensitymodulated radiotherapy for cervical cancer. Int J Radiat Oncol Biol Phys 68: 166–171

    Article  PubMed  Google Scholar 

  96. Gerszten K, Colonello K, Heron DE et al. (2006) Feasibility of concurrent cisplatin and extended field radiation therapy (EFRT) using intensitymodulated radiotherapy (IMRT) for carcinoma of the cervix. Gyncol Oncol 102: 182–188

    CAS  Google Scholar 

  97. Esthappan J, Mutic S, Malyapa RS et al. (2004) Treatment planning guidelines regarding the use of CT/PET-guided IMRT for cervical carcinoma with positive paraaortic lymph nodes. Int J Radiat Oncol Biol Phys 58: 1289–1297

    Article  PubMed  Google Scholar 

  98. Ahmed RS, Kim RY, Duan J et al. (2004) IMRT does escalation for positive para aortic lymph nodes in patients with locally advanced cervical cancer while reducing dose to bone marrow and other organs at risk. Int J Radiat Oncol Biol Phys 60: 505–512

    Article  PubMed  Google Scholar 

  99. Lin LL, Mutic S, Low DA et al. (2007) Adaptive brachytherapy treatment planning for cervical cancer using FDG-PET. Int J Radiat Oncol Biol Phys 67: 91–96

    Article  PubMed  Google Scholar 

  100. Chung HH, Kim SK, Kim TH et al. (2006) Clinical impact of FDG-PET imaging in post-therapy surveillance of uterine cervical cancer: From diagnosis to prognosis. Gyncol Oncol 103: 165–170

    Google Scholar 

  101. Hernandez-Maraver D, Hernandez-Navarro F, Gomez-Leon N et al. (2006) Positron emission tomography/computed tomography: Diagnostic accuracy in lymphoma. Br J Haematol 135: 293–302

    Article  PubMed  Google Scholar 

  102. Hutchings M, Loft A, Hansen M et al. (2007) Clinical impact of FDG-PET/CT in the planning of radiotherapy for early stage Hodgkin lymphoma. Eur J Haematol 783: 206–212

    Article  Google Scholar 

  103. Kasanom YL, Jones RJ, Wahl RL (2007) Integrating PET and PET/CT into the risk-adapted theory of lymphoma. J Nucl Med 48 (suppl 1): 19–27

    Google Scholar 

  104. Yahalom J (2005) Transformation in the use of radiation therapy of Hodgkin lymphoma: New concepts and indications lead to modern field design and are assisted by PET imaging and intensity modulated radiation therapy (IMRT). Eur J Haematol 66 (suppl): 90–97

    Article  Google Scholar 

  105. Girinsky T, van der Maazen R, Specht L et al. (2006) Involvednode radiotherapy (INRT) in patients with early Hodgkin Lymphoma: Concepts and guidelines. Radiother Oncol 79: 2770–2777

    Article  Google Scholar 

  106. Munker R, Glass J, Griffeth LK et al. (2004) Contribution of PET imaging to the initial staging and prognosis of patients with Hodgkin’s disease. Ann Oncol 15: 1699–1704

    Article  CAS  PubMed  Google Scholar 

  107. Kavanagh BD, McGarry RC, Timmerman RD (2006) Extracranial radiosurgery (stereotactic body radiation therapy) for oligometastases. Semin Radiat Oncol 16: 77–84

    Article  PubMed  Google Scholar 

  108. Wurm RE, Gum F, Erbel S et al. (2006) Image guided respiratory gated hypofractionated Stereotactic Body Radiation Therapy (H-SBRT) for liver and lung tumors: Initial experience. Acta Oncol 45: 881–889

    Article  CAS  PubMed  Google Scholar 

  109. Wulf J, Baier K, Mueller G, Flentje MP (2005) Dose-response in stereotactic irradiation of lung tumors. Radiother Oncol 77: 83–87

    Article  PubMed  Google Scholar 

  110. Hoopes DJ, Tann M, Fletcher JW et al. (2007) FDG-PET and stereotactic body radiotherapy (SBRT) for stage I non-small-cell lung cancer. Lung Cancer 56: 229–234

    Article  PubMed  Google Scholar 

  111. Choi N, Baumann M, Flentjie M et al. (2001) Predictive factors in radiotherapy for non-small cell lung cancer: Present status. Lung Cancer 31: 43–56

    Article  CAS  PubMed  Google Scholar 

  112. Hoyer M, Roed H, Traberg Hansen A et al. (2006) Phase II study on stereotactic body radiotherapy of colorectal metastases. Acta Oncol 45: 823–830

    Article  PubMed  Google Scholar 

  113. Amthauer H, Denecke T, Hildebrandt B et al. (2006) Evaluation of patients with liver metastases from colorectal cancer for locally ablative treatment with laser induced thermotherapy. Impact of PET with 18F-fluorodeoxyglucose on therapeutic decisions. Nuklearmedizin 45: 177–184

    CAS  PubMed  Google Scholar 

  114. Donckier V, Van Laethem JL, Goldman S et al. (2003) [F-18] fluorodeoxyglucose positron emission tomography as a tool for early recognition of incomplete tumor destruction after radiofrequency ablation for liver metastases. J Surg Oncol 84: 215–223

    Article  PubMed  Google Scholar 

  115. Adeberg S, Hartmann C, Welzel T, Rieken S, Habermehl D, von Deimling A, Debus J, Combs SE (2012) Long-term outcome after radiotherapy in patients with atypical and malignant meningiomas– clinical results in 85 patients treated in a single institution leading to optimized guidelines for early radiation therapy. Int J Radiat Oncol Biol Phys 83(3): 859–864

    Article  PubMed  Google Scholar 

  116. Al-Mamgani A, Van Rooij P, Tans L, Teguh DN, Levendag PC (2013) Toxicity and outcome of intensity-modulated radiotherapy versus 3-dimensional conformal radiotherapy for oropharyngeal cancer: a matched-pair analysis. Technol Cancer Res Treat 12(2): 123–130

    PubMed  Google Scholar 

  117. Alber M, Paulsen F, Eschmann SM, Machulla HJ (2003) On biologically conformal boost dose optimization. Phys Med Biol 48(2): N31–N35

    Article  CAS  PubMed  Google Scholar 

  118. Aristophanous M, Yong Y, Yap JT, Killoran JH, Allen AM, Berbeco RI, Chen AB (2012) Evaluating FDG uptake changes between pre and post therapy respiratory gated PET scans. Radiother Oncol 102(3): 377–382

    Article  PubMed  Google Scholar 

  119. Ashenafi M, R. A. Boyd, T. K. Lee, K. K. Lo, J. P. Gibbons, Rosen, II, J. D. Fontenot and K. R. Hogstrom (2010) Feasibility of postmastectomy treatment with helical TomoTherapy. Int J Radiat Oncol Biol Phys 77(3): 836–842

    Article  PubMed  Google Scholar 

  120. Asnaashari K, M. R. Nodehi, S. R. Mahdavi, S. Gholami and H. R. Khosravi (2013) Dosimetric comparison of different inhomogeneity correction algorithms for external photon beam dose calculations. J Med Phys 38(2): 74–81

    Article  PubMed  PubMed Central  Google Scholar 

  121. Bannas P, C. Weber, G. Adam, T. Frenzel, T. Derlin, J. Mester and S. Klutmann (2011) Contrast-enhanced [(18)F]fluorodeoxyglucosepositron emission tomography/computed tomography for staging and radiotherapy planning in patients with anal cancer. Int J Radiat Oncol Biol Phys 81(2): 445–451

    Article  PubMed  Google Scholar 

  122. Bartelink H, F. Roelofsen, F. Eschwege, P. Rougier, J. F. Bosset, D. G. Gonzalez, D. Peiffert, M. van Glabbeke and M. Pierart (1997) Concomitant radiotherapy and chemotherapy is superior to radiotherapy alone in the treatment of locally advanced anal cancer: results of a phase III randomized trial of the European Organization for Research and Treatment of Cancer Radiotherapy and Gastrointestinal Cooperative Groups. J Clin Oncol 15(5): 2040–2049

    Article  PubMed  Google Scholar 

  123. Barwick T, B. Bencherif, J. M. Mountz and N. Avril (2009) Molecular PET and PET/CT imaging of tumour cell proliferation using F-18 fluoro-L-thymidine: a comprehensive evaluation. Nucl Med Commun 30(12): 908–917

    Article  PubMed  CAS  Google Scholar 

  124. Bentzen SM (2003) Repopulation in radiation oncology: perspectives of clinical research. Int J Radiat Biol 79(7): 581–585

    Article  CAS  PubMed  Google Scholar 

  125. Bergstrom M, H. Lundqvist, K. Ericson, A. Lilja, P. Johnstrom, B. Langstrom, H. von Holst, L. Eriksson and G. Blomqvist (1987) Comparison of the accumulation kinetics of L-(methyl-11 C)- methionine and D-(methyl-11 C)-methionine in brain tumors studied with positron emission tomography. Acta Radiol 28(3): 225–229

    PubMed  Google Scholar 

  126. Bidgood WD, Jr., S. C. Horii, F. W. Prior and D. E. Van Syckle (1997) Understanding and using DICOM, the data interchange standard for biomedical imaging. J Am Med Inform Assoc 4(3): 199–212

    Article  PubMed  PubMed Central  Google Scholar 

  127. Bongers EM, A. Botticella, D. A. Palma, C. J. Haasbeek, A. Warner, W. F. Verbakel, B. Slotman, U. Ricardi and S. Senan (2013) Predictive parameters of symptomatic radiation pneumonitis following stereotactic or hypofractionated radiotherapy delivered using volumetric modulated arcs. Radiother Oncol 109(1): 95–99

    Article  PubMed  Google Scholar 

  128. Booth JT, Zavgorodni SF (2001) Modelling the dosimetric consequences of organ motion at CT imaging on radiotherapy treatment planning. Phys Med Biol 46(5): 1369–1377

    Article  CAS  PubMed  Google Scholar 

  129. Bos R, van Der Hoeven JJ, van Der Wall E, van Der Groep P, van Diest PJ, Comans EF, Joshi U, Semenza GL, Hoekstra OS, Lammertsma AA, Molthoff CF (2002) Biologic correlates of (18) fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol 20: 379–387

    Article  CAS  PubMed  Google Scholar 

  130. Bourhis J, Overgaard J, Audry H, Ang KK, Saunders M, Bernier J, Horiot JC, Le Maître A, Pajak TF, Poulsen MG, O’Sullivan B, Dobrowsky W, Hliniak A, Skladowski K, Hay JH, Pinto LH, Fallai C, Fu KK, Sylvester R, Pignon JP; Meta-Analysis of Radiotherapy in Carcinomas of Head and neck (MARCH) Collaborative Group (2006) Hyperfractionated or accelerated radiotherapy in head and neck cancer: a meta-analysis. Lancet 368(9538): 843–854

    Article  PubMed  Google Scholar 

  131. Saunders M, Dische S, Barrett A, Harvey A, Gibson D, Parmar M (1997) Continuous hyperfractionated accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small-cell lung cancer: a randomised multicentre trial. CHART Steering Committee. Lancet 350(9072): 161–165

    Article  CAS  PubMed  Google Scholar 

  132. Bradley J, K. Bae, N. Choi, K. Forster, B. A. Siegel, J. Brunetti, J. Purdy, S. Faria, T. Vu, W. Thorstad and H. Choy (2012) A phase II comparative study of gross tumor volume definition with or without PET/CT fusion in dosimetric planning for non-small-cell lung cancer (NSCLC): primary analysis of Radiation Therapy Oncology Group (RTOG) 0515. Int J Radiat Oncol Biol Phys 82(1): 435–441

    Article  PubMed  Google Scholar 

  133. Buck AK FAU - Schirrmeister, H., H. F. Schirrmeister, T. F. Mattfeldt and S. N. Reske «Biological characterisation of breast cancer by means of PET. (1619–7070 (Print)).

    Google Scholar 

  134. Buglione M, B. De Bari, F. Trevisan, P. Ghirardelli, S. Pedretti, L. Triggiani and S. M. Magrini (2014) Role of external beam radiotherapy in the treatment of relapsing meningioma. Med Oncol 31(3): 866.

    Google Scholar 

  135. Caldwell CB, K. Mah, M. Skinner and C. E. Danjoux (2003) Can PET provide the 3D extent of tumor motion for individualized internal target volumes? A phantom study of the limitations of CT and the promise of PET. Int J Radiat Oncol Biol Phys 55(5): 1381–1393

    Google Scholar 

  136. Cammoun D, W. R. Hendee and K. A. Davis (1985) Clinical applications of magnetic resonance imaging–current status. West J Med 143(6): 793–803

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Carnell DM, R. E. Smith, F. M. Daley, M. I. Saunders, S. M. Bentzen and P. J. Hoskin (2006) An immunohistochemical assessment of hypoxia in prostate carcinoma using pimonidazole: implications for radioresistance. Int J Radiat Oncol Biol Phys 65(1): 91–99

    Article  PubMed  CAS  Google Scholar 

  138. Chalkidou A, D. B. Landau, E. W. Odell, V. R. Cornelius, M. J. O’Doherty and P. K. Marsden (2012) Correlation between Ki-67 immunohistochemistry and 18F-fluorothymidine uptake in patients with cancer: A systematic review and meta-analysis. Eur.J.Cancer 48(18): 3499–3513

    Google Scholar 

  139. Cheebsumon P, R. Boellaard, R. D. De, E. W. van, B. A. van, M. Yaqub, O. S. Hoekstra, E. F. Comans, A. A. Lammertsma and F. H. van Velden (2012) Assessment of tumour size in PET/CT lung cancer studies: PET- and CT-based methods compared to pathology. EJNMMI. Res. 2(1): 56–52

    Google Scholar 

  140. Chen J, O. Morin, M. Aubin, M. K. Bucci, C. F. Chuang and J. Pouliot (2006) Dose-guided radiation therapy with megavoltage cone-beam CT. Br J Radiol 79 Spec No 1: S87–98

    Google Scholar 

  141. Choi Y, J. K. Kim, H. S. Lee, W. J. Hur, Y. S. Hong, S. Park, K. Ahn and H. Cho (2006) Influence of intravenous contrast agent on dose calculations of intensity modulated radiation therapy plans for head and neck cancer. Radiother Oncol 81(2): 158–162

    Article  PubMed  CAS  Google Scholar 

  142. Christman D, E. J. Crawford, M. Friedkin and A. P. Wolf (1972) Detection of DNA synthesis in intact organisms with positronemitting (methyl- 11 C)thymidine. Proc.Natl.Acad.Sci.U.S.A 69(4): 988–992

    Google Scholar 

  143. Chuong MD, J. M. Freilich, S. E. Hoffe, W. Fulp, J. M. Weber, K. Almhanna, W. Dinwoodie, N. Rao, K. L. Meredith and R. Shridhar (2013) Intensity-Modulated Radiation Therapy vs. 3D Conformal Radiation Therapy for Squamous Cell Carcinoma of the Anal Canal. Gastrointest. Cancer Res. 6(2): 39–45

    Google Scholar 

  144. Cummings B, T. Keane, G. Thomas, A. Harwood and W. Rider (1984) Results and toxicity of the treatment of anal canal carcinoma by radiation therapy or radiation therapy and chemotherapy. Cancer 54(10): 2062–2068

    Article  PubMed  Google Scholar 

  145. Daisne JF, T. Duprez, B. Weynand, M. Lonneux, M. Hamoir, H. Reychler and V. Gregoire (2004) Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 233(1): 93–100

    Article  PubMed  Google Scholar 

  146. Daly ME, Q. T. Le, P. G. Maxim, B. W. Loo, Jr., M. J. Kaplan, N. J. Fischbein, H. Pinto and D. T. Chang (2010) Intensity-modulated radiotherapy in the treatment of oropharyngeal cancer: clinical outcomes and patterns of failure. Int J Radiat Oncol Biol Phys 76(5): 1339–1346

    Article  PubMed  Google Scholar 

  147. Dawson LA, Jaffray DA (2007) Advances in image-guided radiation therapy. J Clin Oncol 25(8): 938–946

    Article  PubMed  Google Scholar 

  148. Dawson LA, Sharpe MB (2006) Image-guided radiotherapy: rationale, benefits, and limitations. Lancet Oncol 7(10): 848–858

    Article  PubMed  Google Scholar 

  149. de Crevoisier R, A. Isambert, A. Lisbona, V. Bodez, M. Marguet, F. Lafay, R. Remonnay and J. L. Lagrange (2007) [Image-guided radiotherapy]. Cancer Radiother 11(6–7): 296–304

    Article  PubMed  Google Scholar 

  150. De RD, S. Wanders, A. Minken, A. Lumens, J. Schiffelers, C. Stultiens, S. Halders, L. Boersma, A. Baardwijk, T. Verschueren, M. Hochstenbag, G. Snoep, B. Wouters, S. Nijsten, S. M. Bentzen, M. Kroonenburgh, M. Ollers and P. Lambin (2005) Effects of radiotherapy planning with a dedicated combined PET-CTsimulator of patients with non-small cell lung cancer on dose limiting normal tissues and radiation dose-escalation: a planning study. Radiother Oncol 77(1): 5–10

    Article  PubMed  Google Scholar 

  151. Dehdashti F, P. W. Grigsby, J. S. Lewis, R. Laforest, B. A. Siegel and M. J. Welch (2008) Assessing tumor hypoxia in cervical cancer by PET with 60Cu-labeled diacetyl-bis(N4-methylthiosemicarbazone). J. Nucl. Med. 49(2): 201–205

    Article  PubMed  CAS  Google Scholar 

  152. Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF) (2014) Interdisziplinäre Leitlinie der Qualität S3 zur Früherkennung, Diagnose und Therapie der verschiedenen Stadien des Prostatakarzinoms, Langversion 3.1, AWMF Registernummer: 034/022OL, http://leitlinienprogrammonkologie.de/Leitlinien.7.0.html, Zugegriffen am: 13.02.2016

  153. Eibel R (2006). Parenchymal Changes of the Lung. Protocols for Multislice CT. R. Bruening, A. Kuettner and T. Flohr, Springer Berlin Heidelberg: 128–135

    Google Scholar 

  154. Evans PM (2008) Anatomical imaging for radiotherapy. Phys Med Biol 53(12): R151–R191

    Article  PubMed  Google Scholar 

  155. Fay M, C. M. Poole and G. Pratt (2013) Recent advances in radiotherapy for thoracic tumours. J Thorac Dis 5(Suppl 5): S551–S555

    PubMed  PubMed Central  Google Scholar 

  156. Filippi AR, P. Ciammella, C. Piva, R. Ragona, B. Botto, P. Gavarotti, F. Merli, U. Vitolo, C. Iotti and U. Ricardi (2014) Involved-site image-guided intensity modulated versus 3D conformal radiation therapy in early stage supradiaphragmatic Hodgkin lymphoma. Int J Radiat Oncol Biol Phys 89(2): 370–375

    Article  PubMed  Google Scholar 

  157. Filss CP, N. Galldiks, G. Stoffels, M. Sabel, H. J. Wittsack, B. Turowski, G. Antoch, K. Zhang, G. R. Fink, H. H. Coenen, N. J. Shah, H. Herzog and K. J. Langen (2014) Comparison of 18F-FET PET and perfusionweighted MR imaging: a PET/MR imaging hybrid study in patients with brain tumors. J Nucl Med 55(4): 540–545

    Article  PubMed  CAS  Google Scholar 

  158. Fletcher GH (1984) Lucy Wortham James Lecture. Subclinical disease. Cancer 53(6): 1274–1284

    Article  CAS  PubMed  Google Scholar 

  159. Freilich J, S. E. Hoffe, K. Almhanna, W. Dinwoodie, B. Yue, W. Fulp, K. L. Meredith and R. Shridhar (2014) Comparative outcomes for three-dimensional conformal versus intensity-modulated radiation therapy for esophageal cancer. Dis Esophagus

    Google Scholar 

  160. Fyles AW, M. Milosevic, R. Wong, M. C. Kavanagh, M. Pintilie, A. Sun, W. Chapman, W. Levin, L. Manchul, T. J. Keane and R. P. Hill (1998) Oxygenation predicts radiation response and survival in patients with cervix cancer. Radiother Oncol 48(2): 149–156

    Article  PubMed  Google Scholar 

  161. Gandevia B, Stradling P (1957) Observer variation in the tomographic diagnosis of tuberculous cavitation. Tubercle. 38(2): 113–122

    Article  CAS  PubMed  Google Scholar 

  162. Garden AS, W. H. Morrison, P. F. Wong, S. S. Tung, D. I. Rosenthal, L. Dong, B. Mason, G. H. Perkins and K. K. Ang (2007) Diseasecontrol rates following intensity-modulated radiation therapy for small primary oropharyngeal carcinoma. Int J Radiat Oncol Biol Phys 67(2): 438–444

    Article  PubMed  Google Scholar 

  163. Garg MK, J. Glanzman and S. Kalnicki (2012) The evolving role of positron emission tomography-computed tomography in organ-preserving treatment of head and neck cancer. Semin Nucl Med 42(5): 320–327

    Article  PubMed  Google Scholar 

  164. Geets X, J. F. Daisne, M. Tomsej, T. Duprez, M. Lonneux and V. Gregoire (2006) Impact of the type of imaging modality on target volumes delineation and dose distribution in pharyngo- laryngeal squamous cell carcinoma: comparison between pre- and per-treatment studies. Radiother Oncol 78(3): 291–297

    Article  PubMed  Google Scholar 

  165. Geets X, J. A. Lee, A. Bol, M. Lonneux and V. Gregoire (2007) A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging 34(9): 1427–1438

    Article  PubMed  CAS  Google Scholar 

  166. Gehler B, F. Paulsen, M. O. Oksuz, T. K. Hauser, S. M. Eschmann, R. Bares, C. Pfannenberg, M. Bamberg, P. Bartenstein, C. Belka and U. Ganswindt (2009) [68Ga]-DOTATOC-PET/CT for meningioma IMRT treatment planning. Radiat Oncol 4: 56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Glaudemans AW, R. H. Enting, M. A. Heesters, R. A. Dierckx, R. W. van Rheenen, A. M. Walenkamp and R. H. Slart (2013) Value of 11 C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging 40(4): 615–635

    Article  PubMed  CAS  Google Scholar 

  168. Gomez D, O. Cahlon, J. Mechalakos and N. Lee (2010) An investigation of intensity-modulated radiation therapy versus conventional two-dimensional and 3D-conformal radiation therapy for early stage larynx cancer. Radiat Oncol 5: 74

    Article  PubMed  PubMed Central  Google Scholar 

  169. Grills IS, D. Yan, Q. C. Black, C. Y. Wong, A. A. Martinez and L. L. Kestin (2007) Clinical implications of defining the gross tumor volume with combination of CT and 18FDG-positron emission tomography in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 67(3): 709–719

    Article  PubMed  Google Scholar 

  170. Grosu AL, N. Wiedenmann and M. Molls (2005) Biological imaging in radiation oncology. Z. Med. Phys. 15(3): 141–145

    Article  Google Scholar 

  171. Guerrero Urbano MT, Nutting CM (2004) Clinical use of intensitymodulated radiotherapy: part I. Br.J.Radiol. 77(914): 88–96

    Google Scholar 

  172. Harris AL (2002) Hypoxia–a key regulatory factor in tumour growth. Nat Rev Cancer 2(1): 38–47

    Article  CAS  PubMed  Google Scholar 

  173. Heidenreich A, P. J. Bastian, J. Bellmunt, M. Bolla, S. Joniau, T. van der Kwast, M. Mason, V. Matveev, T. Wiegel, F. Zattoni and N. Mottet (2014) EAU Guidelines on Prostate Cancer. Part II: Treatment of Advanced, Relapsing, and Castration-Resistant Prostate Cancer. Eur Urol 65(2): 467–479

    Article  PubMed  CAS  Google Scholar 

  174. Hilton S, H. W. Herr, J. B. Teitcher, C. B. Begg and R. A. Castellino (1997) CT detection of retroperitoneal lymph node metastases in patients with clinical stage I testicular nonseminomatous germ cell cancer: assessment of size and distribution criteria. AJR Am.J.Roentgenol. 169(2): 521–525

    Google Scholar 

  175. Hockel M, K. Schlenger, B. Aral, M. Mitze, U. Schaffer and P. Vaupel (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 56(19): 4509–4515

    PubMed  Google Scholar 

  176. Hoeben BA, J. Bussink, E. G. Troost, W. J. Oyen and J. H. Kaanders (2013) Molecular PET imaging for biology-guided adaptive radiotherapy of head and neck cancer. Acta Oncol. 52(7): 1257–1271

    Article  PubMed  CAS  Google Scholar 

  177. Holthusen H (1936) Erfahrungen über die Verträglichkeitsgrenze für Röntgenstrahlen und deren Nutzanwendung. Strahlentherapie 57: 15

    Google Scholar 

  178. Hoppe BS, S. Flampouri, Z. Su, N. Latif, N. H. Dang, J. Lynch, M. Joyce, E. Sandler, Z. Li and N. P. Mendenhall (2012) Effective dose reduction to cardiac structures using protons compared with 3DCRT and IMRT in mediastinal Hodgkin lymphoma. Int J Radiat Oncol Biol Phys 84(2): 449–455

    Article  PubMed  Google Scholar 

  179. Hovels AM, R. A. Heesakkers, E. M. Adang, G. J. Jager, S. Strum, Y. L. Hoogeveen, J. L. Severens and J. O. Barentsz (2008) The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin. Radiol. 63(4): 387–395

    Article  PubMed  Google Scholar 

  180. Hummel S, E. L. Simpson, P. Hemingway, M. D. Stevenson and A. Rees (2010) Intensity-modulated radiotherapy for the treatment of prostate cancer: a systematic review and economic evaluation. Health Technol Assess 14(47): 1–108, iii–iv

    PubMed  Google Scholar 

  181. Hussein R, U. Engelmann, A. Schroeter and H. P. Meinzer (2004) DICOM structured reporting: Part 1. Overview and characteristics. Radiographics. 24(3): 891–896

    Article  PubMed  Google Scholar 

  182. Hussein R, U. Engelmann, A. Schroeter and H. P. Meinzer (2004) DICOM structured reporting: Part 2. Problems and challenges in implementation for PACS workstations. Radiographics. 24(3): 897–909

    Article  PubMed  Google Scholar 

  183. Jadvar H (2012) Molecular imaging of prostate cancer: PET radiotracers. AJR Am J Roentgenol 199(2): 278–291

    Article  PubMed  PubMed Central  Google Scholar 

  184. Jhingran A, K. Winter, L. Portelance, B. Miller, M. Salehpour, R. Gaur, L. Souhami, W. Small, Jr, L. Berk and D. Gaffney (2012) A phase II study of intensity modulated radiation therapy to the pelvis for postoperative patients with endometrial carcinoma: radiation therapy oncology group trial 0418. Int J Radiat Oncol Biol Phys 84(1): e23–28

    Article  PubMed  Google Scholar 

  185. Kachnic LA, H. K. Tsai, J. J. Coen, L. S. Blaszkowsky, K. Hartshorn, E. L. Kwak, J. D. Willins, D. P. Ryan and T. S. Hong (2012) Dosepainted intensity-modulated radiation therapy for anal cancer: a multi-institutional report of acute toxicity and response to therapy. Int J Radiat Oncol Biol Phys 82(1): 153–158

    Article  PubMed  Google Scholar 

  186. Kachnic LA, K. Winter, R. J. Myerson, M. D. Goodyear, J. Willins, J. Esthappan, M. G. Haddock, M. Rotman, P. J. Parikh, H. Safran and C. G. Willett (2013) RTOG 0529: a phase 2 evaluation of dosepainted intensity modulated radiation therapy in combination with 5-fluorouracil and mitomycin-C for the reduction of acute morbidity in carcinoma of the anal canal. Int J Radiat Oncol Biol Phys 86(1): 27–33

    Article  PubMed  CAS  Google Scholar 

  187. Kickingereder P, F. Dorn, T. Blau, M. Schmidt, M. Kocher, N. Galldiks and M. I. Ruge (2013) Differentiation of local tumor recurrence from radiation-induced changes after stereotactic radiosurgery for treatment of brain metastasis: case report and review of the literature. Radiat. Oncol. 8:52. doi: 10.1186/1748-717X-8-52.: 52–58

    Google Scholar 

  188. Kim G, Y. S. Kim, E. J. Han, R. Yoo Ie, J. H. Song, S. N. Lee, J. H. Lee, B. O. Choi, H. S. Jang and S. C. Yoon (2011) FDG-PET/CT as prognostic factor and surveillance tool for postoperative radiation recurrence in locally advanced head and neck cancer. Radiat Oncol J 29(4): 243–251

    Article  PubMed  PubMed Central  Google Scholar 

  189. Kim JJ, Tannock IF (2005) Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat Rev Cancer 5(7): 516–525

    Article  CAS  PubMed  Google Scholar 

  190. Kitajima K, R. C. Murphy and M. A. Nathan (2013) Choline PET/CT for imaging prostate cancer: an update. Ann Nucl Med 27(7): 581–591

    Article  CAS  PubMed  Google Scholar 

  191. Klein EE, W. B. Harms, D. A. Low, V. Willcut and J. A. Purdy (1995) Clinical implementation of a commercial multileaf collimator: dosimetry, networking, simulation, and quality assurance. Int J Radiat Oncol Biol Phys 33(5): 1195–1208

    Article  PubMed  Google Scholar 

  192. Koch CJ, Evans SM (2003) Non-invasive PET and SPECT imaging of tissue hypoxia using isotopically labeled 2-nitroimidazoles. Adv.Exp.Med.Biol. 510: 285–292

    Google Scholar 

  193. Koukourakis MI, S. M. Bentzen, A. Giatromanolaki, G. D. Wilson, F. M. Daley, M. I. Saunders, S. Dische, E. Sivridis and A. L. Harris (2006) Endogenous markers of two separate hypoxia response pathways (hypoxia inducible factor 2 alpha and carbonic anhydrase 9) are associated with radiotherapy failure in head and neck cancer patients recruited in the CHART randomized trial. J. Clin. Oncol. 24(5): 727–735

    Article  PubMed  CAS  Google Scholar 

  194. Krengli M, M. E. Milia, L. Turri, E. Mones, M. C. Bassi, B. Cannillo, L. Deantonio, G. Sacchetti, M. Brambilla and E. Inglese (2010) FDG-PET/CT imaging for staging and target volume delineation in conformal radiotherapy of anal carcinoma. Radiat Oncol 5: 10

    Article  PubMed  PubMed Central  Google Scholar 

  195. Lai SZ, W. F. Li, L. Chen, W. Luo, Y. Y. Chen, L. Z. Liu, Y. Sun, A. H. Lin, M. Z. Liu and J. Ma (2011) How does intensity-modulated radiotherapy versus conventional two-dimensional radiotherapy influence the treatment results in nasopharyngeal carcinoma patients?” Int J Radiat Oncol Biol Phys 80(3): 661–668

    Article  PubMed  Google Scholar 

  196. Langen KJ, K. Hamacher, M. Weckesser, F. Floeth, G. Stoffels, D. Bauer, H. H. Coenen and D. Pauleit (2006) O-(2-[18F]fluoroethyl)- L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 33(3): 287–294

    Article  PubMed  CAS  Google Scholar 

  197. Langen KJ, D. Pauleit and H. H. Coenen (2002) 3-[(123)I]Iodoalpha- methyl-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 29(6): 625–631

    Article  CAS  PubMed  Google Scholar 

  198. Lawton CA, M. DeSilvio, M. Roach, 3rd, V. Uhl, R. Kirsch, M. Seider, M. Rotman, C. Jones, S. Asbell, R. Valicenti, S. Hahn and C. R. Thomas, Jr. (2007) An update of the phase III trial comparing whole pelvic to prostate only radiotherapy and neoadjuvant to adjuvant total androgen suppression: updated analysis of RTOG 94 – 13, with emphasis on unexpected hormone/radiation interactions. Int J Radiat Oncol Biol Phys 69(3): 646–655

    Google Scholar 

  199. Lee YK, G. Cook, M. A. Flower, C. Rowbottom, M. Shahidi, B. Sharma and S. Webb (2004) Addition of 18F-FDG-PET scans to radiotherapy planning of thoracic lymphoma. Radiother Oncol 73(3): 277–283

    Article  PubMed  Google Scholar 

  200. Lees J, L. Holloway, M. Fuller and D. Forstner (2005) Effect of intravenous contrast on treatment planning system dose calculations in the lung. Australas Phys Eng Sci Med 28(3): 190–195

    Article  PubMed  Google Scholar 

  201. Leon SP, R. D. Folkerth and P. M. Black (1996) Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer 77(2): 362–372

    Article  CAS  PubMed  Google Scholar 

  202. Letourneau D, M. Finlay, B. O’Sullivan, J. N. Waldron, B. J. Cummings, J. Ringash, J. J. Kim, A. J. Bayley and L. A. Dawson (2008) Lack of influence of intravenous contrast on head and neck IMRT dose distributions. Acta Oncol. 47(1): 90–94

    Article  PubMed  CAS  Google Scholar 

  203. Ling CC, J. Humm, S. Larson, H. Amols, Z. Fuks, S. Leibel and J. A. Koutcher (2000) Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 47(3): 551–560

    Article  PubMed  Google Scholar 

  204. Ling CC, Li XA (2005) Over the next decade the success of radiation treatment planning will be judged by the immediate biological response of tumor cells rather than by surrogate measures such as dose maximization and uniformity. Med. Phys. 32(7): 2189–2192

    Article  Google Scholar 

  205. Malinen E, A. Sovik, D. Hristov, O. S. Bruland and D. R. Olsen (2006) Adapting radiotherapy to hypoxic tumours. Phys Med Biol 51(19): 4903–4921

    Article  PubMed  CAS  Google Scholar 

  206. Marignol L, M. Coffey, M. Lawler and D. Hollywood (2008) Hypoxia in prostate cancer: a powerful shield against tumour destruction? Cancer Treat. Rev. 34(4): 313–327

    Article  PubMed  CAS  Google Scholar 

  207. Medelsohn ML (2013). The biology of dose-limiting tissues. Time and Dose Relationship in Radiation Biology as Applied to Radiotherapy. Upton, NY, USA, Brookhaven National Laboratory: 154–173

    Google Scholar 

  208. Mees G, R. Dierckx, C. Vangestel and C. Van de Wiele (2009) Molecular imaging of hypoxia with radiolabelled agents. Eur J Nucl Med Mol Imaging 36(10): 1674–1686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Metwally H, F. Courbon, I. David, T. Filleron, A. Blouet, M. Rives, F. Izar, S. Zerdoud, G. Plat, J. Vial, A. Robert and A. Laprie (2011) Coregistration of prechemotherapy PET-CT for planning pediatric Hodgkin’s disease radiotherapy significantly diminishes interobserver variability of clinical target volume definition. Int J Radiat Oncol Biol Phys 80(3): 793–799

    Article  PubMed  Google Scholar 

  210. Mildenberger P, M. Eichelberg and E. Martin (2002) Introduction to the DICOM standard. Eur. Radiol. 12(4): 920–927

    Article  PubMed  Google Scholar 

  211. Mistrangelo M, E. Pelosi, M. Bello, U. Ricardi, E. Milanesi, P. Cassoni, M. Baccega, C. Filippini, P. Racca, A. Lesca, F. H. Munoz, G. Fora, A. Skanjeti, F. Cravero and M. Morino (2012) Role of positron emission tomography-computed tomography in the management of anal cancer. Int J Radiat Oncol Biol Phys 84(1): 66–72

    Article  PubMed  Google Scholar 

  212. Miyagawa T, T. Oku, H. Uehara, R. Desai, B. Beattie, J. Tjuvajev and R. Blasberg (1998) «Facilitated” amino acid transport is upregulated in brain tumors. J Cereb Blood Flow Metab 18(5): 500–509

    PubMed  Google Scholar 

  213. Monnich D, S. Lachelt, T. Beyer, M. K. Werner and D. Thorwarth (2013) Combined PET/CT for IMRT treatment planning of NSCLC: contrast-enhanced CT images for Monte Carlo dose calculation. Phys. Med. 29(6): 644–649

    Google Scholar 

  214. Moretto F, M. Rampino, F. Munoz, M. G. Ruo Redda, A. Reali, V. Balcet, S. Badellino, C. Piva, M. Schena, M. Airoldi, O. Ostellino, G. Pecorari, R. Ragona and U. Ricardi (2014) Conventional 2D (2DRT) and 3D conformal radiotherapy (3DCRT) versus intensitymodulated radiotherapy (IMRT) for nasopharyngeal cancer treatment. Radiol Med.

    Google Scholar 

  215. Morikawa LK, Roach M 3rd (2011) Pelvic nodal radiotherapy in patients with unfavorable intermediate and high-risk prostate cancer: evidence, rationale, and future directions. Int J Radiat Oncol Biol Phys 80(1): 6–16

    Article  PubMed  Google Scholar 

  216. Mottram JC (1936) A Factor of Importance in the Radio Sensitivity of Tumours. The British Journal of Radiology 9(105): 606–614

    Article  Google Scholar 

  217. Muller AC, J. Lutjens, M. Alber, F. Eckert, M. Bamberg, D. Schilling, C. Belka and U. Ganswindt (2012) Toxicity and outcome of pelvic IMRT for node-positive prostate cancer. Strahlenther Onkol 188(11): 982–989

    Article  PubMed  Google Scholar 

  218. Munch-Petersen B, L. Cloos, H. K. Jensen and G. Tyrsted (1995) Human thymidine kinase 1. Regulation in normal and malignant cells. Adv. Enzyme Regul. 35: 69–89

    Article  PubMed  Google Scholar 

  219. Nestle U, S. Kremp, A. Schaefer-Schuler, C. Sebastian-Welsch, D. Hellwig, C. Rube and C. M. Kirsch (2005) Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. J. Nucl. Med. 46(8): 1342–1348

    PubMed  Google Scholar 

  220. Nigro ND, V. K. Vaitkevicius and B. Considine, Jr. (1974) Combined therapy for cancer of the anal canal: a preliminary report. Dis Colon Rectum 17(3): 354–356

    Article  PubMed  Google Scholar 

  221. Nordsmark M, S. M. Bentzen, V. Rudat, D. Brizel, E. Lartigau, P. Stadler, A. Becker, M. Adam, M. Molls, J. Dunst, D. J. Terris and J. Overgaard (2005) Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol 77(1): 18–24

    Article  PubMed  Google Scholar 

  222. Oelfke U, T. Tucking, S. Nill, A. Seeber, B. Hesse, P. Huber and C. Thilmann (2006) Linac-integrated kV-cone beam CT: technical features and first applications. Med Dosim 31(1): 62–70

    Article  PubMed  Google Scholar 

  223. Olszewski AJ, R. Shrestha and J. J. Castillo (2015) Treatment Selection and Outcomes in Early-Stage Classical Hodgkin Lymphoma: Analysis of the National Cancer Data Base. J Clin Oncol.

    Google Scholar 

  224. Oosterwijk H (1998) DICOM versus HL7 for modality interfacing. J. Digit. Imaging. 11(3 Suppl 1): 39–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Osborne JR, N. H. Akhtar, S. Vallabhajosula, A. Anand, K. Deh and S. T. Tagawa (2013) Prostate-specific membrane antigenbased imaging. Urol Oncol 31(2): 144–154

    Article  PubMed  CAS  Google Scholar 

  226. Overgaard J, Horsman MR (1996) Modification of Hypoxia- Induced Radioresistance in Tumors by the Use of Oxygen and Sensitizers. Semin.Radiat.Oncol. 6(1): 10–21

    CAS  Google Scholar 

  227. Perez CA, J. A. Purdy, W. Harms, R. Gerber, M. V. Graham, J. W. Matthews, W. Bosch, R. Drzymala, B. Emami, S. Fox and et al. (1995) Three-dimensional treatment planning and conformal radiation therapy: preliminary evaluation. Radiother Oncol 36(1): 32–43

    Article  PubMed  Google Scholar 

  228. Perks JR, J. Lehmann, A. M. Chen, C. C. Yang, R. L. Stern and J. A. Purdy (2008) Comparison of peripheral dose from imageguided radiation therapy (IGRT) using kV cone beam CT to intensity-modulated radiation therapy (IMRT). Radiother Oncol 89(3): 304–310

    Article  PubMed  Google Scholar 

  229. Persson GF, D. E. Nygaard, P. Munck Af Rosenschold, I. Richter Vogelius, M. Josipovic, L. Specht and S. S. Korreman (2011) Artifacts in conventional computed tomography (CT) and free breathing four-dimensional CT induce uncertainty in gross tumor volume determination. Int J Radiat Oncol Biol Phys 80(5): 1573–1580

    Article  PubMed  Google Scholar 

  230. Picchio M, E. Giovannini, C. Crivellaro, L. Gianolli, M. N. Di and C. Messa (2010) Clinical evidence on PET/CT for radiation therapy planning in prostate cancer. Radiother Oncol 96(3): 347–350

    Article  PubMed  Google Scholar 

  231. Piroth MD, M. Pinkawa, R. Holy, J. Klotz, S. Schaar, G. Stoffels, N. Galldiks, H. H. Coenen, H. J. Kaiser, K. J. Langen and M. J. Eble (2012) Integrated boost IMRT with FET-PET-adapted local dose escalation in glioblastomas. Results of a prospective phase II study. Strahlenther. Onkol. 188(4): 334–339

    Article  PubMed  Google Scholar 

  232. Pommier P, S. Chabaud, J. L. Lagrange, P. Richaud, F. Lesaunier, E. Le Prise, J. P. Wagner, M. H. Hay, V. Beckendorf, J. P. Suchaud, P. M. Pabot du Chatelard, V. Bernier, N. Voirin, D. Perol and C. Carrie (2007) Is there a role for pelvic irradiation in localized prostate adenocarcinoma? Preliminary results of GETUG-01. J Clin Oncol 25(34): 5366–5373

    Google Scholar 

  233. Pow EH, D. L. Kwong, A. S. McMillan, M. C. Wong, J. S. Sham, L. H. Leung and W. K. Leung (2006) Xerostomia and quality of life after intensity-modulated radiotherapy vs. conventional radiotherapy for early-stage nasopharyngeal carcinoma: initial report on a randomized controlled clinical trial. Int J Radiat Oncol Biol Phys 66(4): 981–991

    Article  PubMed  Google Scholar 

  234. Raemaekers JM, M. P. Andre, M. Federico, T. Girinsky, R. Oumedaly, E. Brusamolino, P. Brice, C. Ferme, R. van der Maazen, M. Gotti, R. Bouabdallah, C. J. Sebban, Y. Lievens, A. Re, A. Stamatoullas, F. Morschhauser, P. J. Lugtenburg, E. Abruzzese, P. Olivier, R. O. Casasnovas, G. van Imhoff, T. Raveloarivahy, M. Bellei, T. van der Borght, S. Bardet, A. Versari, M. Hutchings, M. Meignan and C. Fortpied (2014) Omitting radiotherapy in early positron emission tomography-negative stage I/II Hodgkin lymphoma is associated with an increased risk of early relapse: Clinical results of the preplanned interim analysis of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol 32(12): 1188–1194

    Article  PubMed  Google Scholar 

  235. Ramm U, M. Damrau, S. Mose, K. H. Manegold, C. G. Rahl and H. D. Bottcher (2001) Influence of CT contrast agents on dose calculations in a 3D treatment planning system. Phys Med Biol 46(10): 2631–2635

    Article  PubMed  Google Scholar 

  236. Rankine AW, P. J. Lanzon and N. A. Spry (2008) Effect of contrast media on megavoltage photon beam dosimetry. Med Dosim 33(3): 169–174

    Article  PubMed  Google Scholar 

  237. Rasey JS, J. R. Grierson, L. W. Wiens, P. D. Kolb and J. L. Schwartz (2002) Validation of FLT uptake as a measure of thymidine kinase- 1 activity in A549 carcinoma cells. J. Nucl. Med. 43(9): 1210–1217

    PubMed  Google Scholar 

  238. Rasey JS, W. J. Koh, M. L. Evans, L. M. Peterson, T. K. Lewellen, M. M. Graham and K. A. Krohn (1996) Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys 36(2): 417–428

    Article  PubMed  Google Scholar 

  239. Rasey JS, N. J. Nelson, L. Chin, M. L. Evans and Z. Grunbaum (1990) Characteristics of the binding of labeled fluoromisonidazole in cells in vitro. Radiat. Res. 122(3): 301–308

    Article  PubMed  Google Scholar 

  240. Reddy K, D. Damek, L. E. Gaspar, D. Ney, A. Waziri, K. Lillehei, K. Stuhr, B. D. Kavanagh and C. Chen (2012) Phase II trial of hypofractionated IMRT with temozolomide for patients with newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys 84(3): 655–660

    Article  PubMed  CAS  Google Scholar 

  241. Robar JL, S. A. Riccio and M. A. Martin (2002) Tumour dose enhancement using modified megavoltage photon beams and contrast media. Phys Med Biol 47(14): 2433–2449

    Article  PubMed  Google Scholar 

  242. Rodrigues G, M. Lock, D. D‹Souza, E. Yu and J. Van Dyk (2004) Prediction of radiation pneumonitis by dose - volume histogram parameters in lung cancer–a systematic review. Radiother Oncol 71(2): 127–138

    Article  PubMed  Google Scholar 

  243. Salati SA, Al Kadi A (2012) Anal cancer - a review. Int J Health Sci (Qassim) 6(2): 206–230

    Article  Google Scholar 

  244. Schellong G, M. Riepenhausen, K. Ehlert, J. Bramswig, W. Dorffel, D. German Working Group on the Long-Term Sequelae of Hodgkin’s, R. K. Schmutzler, K. Rhiem, U. Bick, B. German Consortium for Hereditary and C. Ovarian (2014) Breast cancer in young women after treatment for Hodgkin’s disease during childhood or adolescence–an observational study with up to 33-year follow-up. Dtsch Arztebl Int 111(1–2): 3–9

    Google Scholar 

  245. Schmiegel W (2008). S3 Leitlinie »Kolorektales Karzinom«. Ergebnisse evidenzbasierter Konsensuskonferenzen am 6./7. Februar 2004 und am 8./9. Juni 2007 (für die Themenkomplexe IV, VI und VII).

    Google Scholar 

  246. Schreurs LM, D. M. Busz, G. M. Paardekooper, J. C. Beukema, P. L. Jager, E. J. Van der Jagt, G. M. van Dam, H. Groen, J. T. Plukker and J. A. Langendijk (2010) Impact of 18-fluorodeoxyglucose positron emission tomography on computed tomography defined target volumes in radiation treatment planning of esophageal cancer: reduction in geographic misses with equal inter-observer variability: PET/CT improves esophageal target definition. Dis Esophagus 23(6): 493–501

    Article  PubMed  Google Scholar 

  247. Schutze C, R. Bergmann, A. Yaromina, F. Hessel, J. Kotzerke, J. Steinbach, M. Baumann and B. Beuthien-Baumann (2007) Effect of increase of radiation dose on local control relates to pre-treatment FDG uptake in FaDu tumours in nude mice. Radiother Oncol 83(3): 311–315

    Article  PubMed  CAS  Google Scholar 

  248. Schwarz JK, S. Wahab and P. W. Grigsby (2011) Prospective phase I-II trial of helical tomotherapy with or without chemotherapy for postoperative cervical cancer patients. Int J Radiat Oncol Biol Phys 81(5): 1258–1263

    Article  PubMed  Google Scholar 

  249. Sheets NC, G. H. Goldin, A. M. Meyer, Y. Wu, Y. Chang, T. Sturmer, J. A. Holmes, B. B. Reeve, P. A. Godley, W. R. Carpenter and R. C. Chen (2012) Intensity-modulated radiation therapy, proton therapy, or conformal radiation therapy and morbidity and disease control in localized prostate cancer. JAMA. 307(15): 1611–1620

    Article  PubMed  PubMed Central  Google Scholar 

  250. Shibamoto Y, A. Naruse, H. Fukuma, S. Ayakawa, C. Sugie and N. Tomita (2007) Influence of contrast materials on dose calculation in radiotherapy planning using computed tomography for tumors at various anatomical regions: a prospective study. Radiother Oncol 84(1): 52–55

    Article  PubMed  CAS  Google Scholar 

  251. Shirvani SM, J. Jiang, D. R. Gomez, J. Y. Chang, T. A. Buchholz and B. D. Smith (2013) Intensity modulated radiotherapy for stage III non-small cell lung cancer in the United States: predictors of use and association with toxicities. Lung Cancer 82(2): 252–259

    Article  PubMed  Google Scholar 

  252. Shridhar R, K. Almhanna, K. L. Meredith, M. C. Biagioli, M. D. Chuong, A. Cruz and S. E. Hoffe (2013) Radiation therapy and esophageal cancer. Cancer Control 20(2): 97–110

    PubMed  Google Scholar 

  253. Shusharina N, J. Cho, G. C. Sharp and N. C. Choi (2014) Correlation of (18)F-FDG avid volumes on pre-radiation therapy and post-radiation therapy FDG PET scans in recurrent lung cancer. Int J Radiat Oncol Biol Phys 89(1): 137–144

    Article  PubMed  PubMed Central  Google Scholar 

  254. Spence AM, M. Muzi, K. R. Swanson, F. O’Sullivan, J. K. Rockhill, J. G. Rajendran, T. C. Adamsen, J. M. Link, P. E. Swanson, K. J. Yagle, R. C. Rostomily, D. L. Silbergeld and K. A. Krohn (2008) Regional hypoxia in glioblastoma multiforme quantified with [18F]fluoromisonidazole positron emission tomography before radiotherapy: correlation with time to progression and survival. Clin. Cancer Res. 14(9): 2623–2630

    Article  PubMed  PubMed Central  Google Scholar 

  255. Steenbakkers RJ, J. C. Duppen, I. Fitton, K. E. Deurloo, L. Zijp, A. L. Uitterhoeve, P. T. Rodrigus, G. W. Kramer, J. Bussink, J. K. De, J. S. Belderbos, A. A. Hart, P. J. Nowak, H. M. van and C. R. Rasch (2005) Observer variation in target volume delineation of lung cancer related to radiation oncologist-computer interaction: a ›Big Brother‹ evaluation. Radiother Oncol 77(2): 182–190

    Article  PubMed  Google Scholar 

  256. Steenbakkers RJ, J. C. Duppen, I. Fitton, K. E. Deurloo, L. J. Zijp, E. F. Comans, A. L. Uitterhoeve, P. T. Rodrigus, G. W. Kramer, J. Bussink, J. K. De, J. S. Belderbos, P. J. Nowak, H. M. van and C. R. Rasch (2006) Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Int J Radiat Oncol Biol Phys 64(2): 435–448

    Article  PubMed  Google Scholar 

  257. Stroom J, H. Blaauwgeers, B. A. van, L. Boersma, J. Lebesque, J. Theuws, R. J. van Suylen, H. Klomp, K. Liesker, P. R. van, C. Siedschlag and K. Gilhuijs (2007) Feasibility of pathology-correlated lung imaging for accurate target definition of lung tumors. Int J Radiat Oncol Biol Phys 69(1): 267–275

    Article  PubMed  Google Scholar 

  258. Suwinski R, M. Jaworska, B. Nikiel, W. Grzegorz, M. Bankowska- Wozniak, M. Wojciech, S. Krzysztof and L. Dariusz (2010) Predicting the effect of accelerated fractionation in postoperative radiotherapy for head and neck cancer based on molecular marker profiles: data from a randomized clinical trial. Int J Radiat Oncol Biol Phys 77(2): 438–446

    Article  PubMed  Google Scholar 

  259. Sveistrup J, P. M. Af Rosenschold, J. O. Deasy, J. H. Oh, T. Pommer, P. M. Petersen and S. A. Engelholm (2014) Improvement in toxicity in high risk prostate cancer patients treated with imageguided intensity-modulated radiotherapy compared to 3D conformal radiotherapy without daily image guidance. Radiat Oncol 9(1): 44

    Article  Google Scholar 

  260. Tatum JL, G. J. Kelloff, R. J. Gillies, J. M. Arbeit, J. M. Brown, K. S. Chao, J. D. Chapman, W. C. Eckelman, A. W. Fyles, A. J. Giaccia, R. P. Hill, C. J. Koch, M. C. Krishna, K. A. Krohn, J. S. Lewis, R. P. Mason, G. Melillo, A. R. Padhani, G. Powis, J. G. Rajendran, R. Reba, S. P. Robinson, G. L. Semenza, H. M. Swartz, P. Vaupel, D. Yang, B. Croft, J. Hoffman, G. Liu, H. Stone and D. Sullivan (2006) Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol 82(10): 699–757

    Article  PubMed  CAS  Google Scholar 

  261. Teh BS, A. Paulino and E. B. Butler (2008) [Recent developments in radiation oncology-integrating radiation physics and molecular radiobiology advances into clinical radiotherapy practice and beyond]. Ai. Zheng. 27(8): 885–893

    Google Scholar 

  262. Thomlinson RH, Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9(4): 539–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Thompson IM, R. K. Valicenti, P. Albertsen, B. J. Davis, S. L. Goldenberg, C. Hahn, E. Klein, J. Michalski, M. Roach, O. Sartor, J. S. Wolf, Jr. and M. M. Faraday (2013) Adjuvant and salvage radiotherapy after prostatectomy: AUA/ASTRO Guideline. J Urol 190(2): 441–449

    Article  PubMed  Google Scholar 

  264. Tozzi A, L. Cozzi, C. Iftode, A. Ascolese, M. C. Campisi, E. Clerici, T. Comito, F. De Rose, A. Fogliata, C. Franzese, P. Mancosu, P. Navarria, S. Tomatis, E. Villa and M. Scorsetti (2014) Radiation therapy of anal canal cancer: from conformal therapy to volumetric modulated arc therapy. BMC Cancer 14: 833

    Article  PubMed  PubMed Central  Google Scholar 

  265. van Baardwijk A, G. Bosmans, L. Boersma, J. Buijsen, S. Wanders, M. Hochstenbag, R. J. van Suylen, A. Dekker, C. Dehing-Oberije, R. Houben, S. M. Bentzen, K. M. van, P. Lambin and R. D. De (2007) PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int J Radiat Oncol Biol Phys 68(3): 771–778

    Article  PubMed  Google Scholar 

  266. Van de Steene J, N. Linthout, M. J. de, V. Vinh-Hung, C. Claassens, M. Noppen, A. Bel and G. Storme (2002) Definition of gross tumor volume in lung cancer: inter-observer variability. Radiother Oncol 62(1): 37–49

    Article  PubMed  Google Scholar 

  267. van der Putten L, O. S. Hoekstra, B. R. de, D. J. Kuik, E. F. Comans, J. A. Langendijk and C. R. Leemans (2008) 2-Deoxy-2[F-18]FDGPET for detection of recurrent laryngeal carcinoma after radiotherapy: interobserver variability in reporting. Mol. Imaging Biol. 10(5): 294–303

    Article  PubMed  PubMed Central  Google Scholar 

  268. van Loon J, C. Siedschlag, J. Stroom, H. Blauwgeers, R. J. van Suylen, J. Knegjens, M. Rossi, B. A. van, L. Boersma, H. Klomp, W. Vogel, S. Burgers and K. Gilhuijs (2012) Microscopic disease extension in three dimensions for non-small-cell lung cancer: development of a prediction model using pathology-validated positron emission tomography and computed tomography features. Int J Radiat Oncol Biol Phys 82(1): 448–456

    Article  PubMed  Google Scholar 

  269. Vanderstraeten B, W. Duthoy, G. W. De, N. W. De and H. Thierens (2006) [18F]fluoro-deoxy-glucose positron emission tomography ([18F]FDG-PET) voxel intensity-based intensity-modulated radiation therapy (IMRT) for head and neck cancer. Radiother Oncol 79(3): 249–258

    Article  CAS  Google Scholar 

  270. Vanderstraeten B, N. Reynaert, L. Paelinck, I. Madani, W. C. De, G. W. De, N. W. De and H. Thierens (2006) Accuracy of patient dose calculation for lung IMRT: A comparison of Monte Carlo, convolution/superposition, and pencil beam computations. Med. Phys. 33(9): 3149–3158

    Article  PubMed  Google Scholar 

  271. Warburg O, F. Wind and E. Negelein (1927) The Metabolism of Tumors in the body. J. Gen. Physiol 8(6): 519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Weber DC, M. Rouzaud and R. Miralbell (2001) Bladder opacification does not significantly influence dose distribution in conformal radiotherapy of prostate cancer. Radiother Oncol 59(1): 95–97

    Article  CAS  PubMed  Google Scholar 

  273. Wilson GD, M. I. Saunders, S. Dische, F. M. Daley, F. M. Buffa, P. I. Richman and S. M. Bentzen (2006) Pre-treatment proliferation and the outcome of conventional and accelerated radiotherapy. Eur.J.Cancer 42(3): 363–371

    Google Scholar 

  274. Winter A, J. Uphoff, R. P. Henke and F. Wawroschek (2010) First results of [11C]choline PET/CT-guided secondary lymph node surgery in patients with PSA failure and single lymph node recurrence after radical retropubic prostatectomy. Urol. Int. 84(4): 418–423

    Article  PubMed  Google Scholar 

  275. Xiao J, H. Zhang, Y. Gong, Y. Fu, B. Tang, S. Wang, Q. Jiang and P. Li (2010) Feasibility of using intravenous contrast-enhanced computed tomography (CT) scans in lung cancer treatment planning. Radiother Oncol 96(1): 73–77

    Article  PubMed  Google Scholar 

  276. Ung Y;C. Gu;K. Cline;A. Sun;R. M. MacRae;J. R. Wright;E. Yu;L. E. K. Y. G. (2011) An Ontario Clinical Oncology Group (OCOG) randomized trial (PET START) of FDG PET/CT in patients with stage III non-small cell lung cancer (NSCLC): Predictors of overall survival. 2011 ASCO Annual Meeting.

    Google Scholar 

  277. Yang Y, Xing L (2005) Towards biologically conformal radiation therapy (BCRT): selective IMRT dose escalation under the guidance of spatial biology distribution. Med. Phys. 32(6): 1473–1484

    Article  Google Scholar 

  278. Yin LJ, X. B. Yu, Y. G. Ren, G. H. Gu, T. G. Ding and Z. Lu (2013) Utilization of PET-CT in target volume delineation for threedimensional conformal radiotherapy in patients with non-small cell lung cancer and atelectasis. Multidiscip.Respir.Med. 8(1): 21

    Google Scholar 

  279. Yongkui L, L. Jian, Wanghan and L. Jingui (2013) 18FDG-PET/CT for the detection of regional nodal metastasis in patients with primary head and neck cancer before treatment: a meta-analysis. Surg Oncol 22(2): e11–16

    Article  PubMed  Google Scholar 

  280. Zhao S, Y. Kuge, T. Mochizuki, T. Takahashi, K. Nakada, M. Sato, T. Takei and N. Tamaki (2005) Biologic correlates of intratumoral heterogeneity in 18F-FDG distribution with regional expression of glucose transporters and hexokinase-II in experimental tumor. J. Nucl. Med. 46(4): 675–682

    PubMed  Google Scholar 

  281. Zilli T, U. Schick, M. Ozsahin, P. Gervaz, A. D. Roth and A. S. Allal (2012) Node-negative T1-T2 anal cancer: radiotherapy alone or concomitant chemoradiotherapy? Radiother Oncol 102(1): 62–67

    Article  PubMed  Google Scholar 

  282. Lee IH, Piert M, Gomez-Hassan D, Junck L, Rogers L, Hayman J, Ten Haken RK, Lawrence TS, Cao Y, Tsien C (2009) Association of 11 C-methionine PET uptake with site of failure after concurrent emozolomide and radiation for primary glioblastoma multiforme. Int J Radiat Oncol Biol Phys 73(2): 479–485

    Article  CAS  PubMed  Google Scholar 

  283. Mottram JC (1936) A Factor of Importance in the Radio Sensitivity of Tumours. Br J Radiol 9(105): 606–614

    Article  Google Scholar 

  284. Krempien R, Münter MW (2011) PET/CT in der Strahlentherapie. In: Mohnike W, Hör G, Schelbert H (Hrsg) PET/CT-Atlas. Interdisziplinäre onkologische, neurologische und kardiologische PET/CT-Diagnostik, 2. Aufl. Springer, Berlin, S 1153–1172

    Google Scholar 

  285. DIN 6827-1 (1993) Protokollierung bei der medizinischen Anwendung ionisierender Strahlung—Teil 1: Therapie mit Elektronenbeschleunigern sowie Röntgen- und Gammabestrahlungseinrichtungen, Beuth Verlag GmbH.

    Google Scholar 

  286. DIN 6814-8:2000–12 (2000) Begriffe in der Radiologischen Technik—Teil 8: Strahlentherapie, Beuth Verlag GmbH.

    Google Scholar 

  287. Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF) (2012) S3 Leitlinie für die Diagnostik, Therapie und Nachsorge des Mammakarzinoms, Langversion 3.0., AWMF-Register-Nummer: 032–045OL, http://leitlinienprogramm-onkologie.de/Mammakarzinom.67.0.html. Zugegriffen am: 13.02.2016

  288. Goeckenjan G, Sitter H, Thomas M et al. (2010) Prävention, Diagnostik, Therapie und Nachsorge des Lungenkarzinoms Interdisziplinäre S3-Leitlinie der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin und der Deutschen Krebsgesellschaft. Pneumologie 64, Supplement 2: e1– e164

    Google Scholar 

  289. Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF) (2012) Mundhöhlenkarzinom. Diagnostik und Therapie des Mundhöhlenkarzinoms. AWMFRegister- Nummer: 007-100OL, http://www.awmf.org/leitlinien/detail/ll/007-100OL.html. Zugegriffen am: 12.02.2016

  290. Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF) (2013) Diagnostik und Therapie des hepatozellulären Karzinoms, Langversion 1.0, AWMF Registrierungsnummer: 032-053OL, http://leitlinienprogrammonkologie.de/Leitlinien.7.0.html. Zugegriffen am: 13.02.2016

  291. Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF) (2013) Hodgkin Lymphom. S3-Leitlinie Diagnostik, Therapie und Nachsorge des Hodgkin Lymphoms bei erwachsenen Patienten, Langversion 1.0, AWMF Registernummer: 018/029OL, http://www.awmf.org/leitlinien/detail/ll/018-029OL.html. Zugegriffen am: 13.02.2016

  292. Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF) (2013) Malignes Melanom. S3-Leitlinie »Diagnostik, Therapie und Nachsorge des Melanoms«, Langversion 1.1, AWMF-Register-Nummer: 032-024OL, http://www.awmf.org/leitlinien/detail/ll/032-024OL.html. Zugegriffen am: 13.02.2016

  293. Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF) (2013) S3-Leitlinie Diagnostik, Therapie und Nachsorge maligner Ovarialtumoren, Langversion 1.1, AWMF-Registernummer: 032/035OL, http://leitlinienprogrammonkologie.de/Leitlinien.7.0.html. Zugegriffen am: 13.02.2016

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lampe, M., Krempien, R., Münter, M. (2016). PET/CT in der Strahlentherapie. In: Mohnike, W., Hör, G., Hertel, A., Schelbert, H. (eds) PET/CT-Atlas. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48842-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48842-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48841-6

  • Online ISBN: 978-3-662-48842-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics