Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 758 Accesses

Abstract

Thermal fatigue behavior of the Sn–4Ag/Cu solder joints were investigated in this chapter. The solder joints were clamped by special designed clamps and cycled at low temperature amplitudes, their deformation morphologies were observed by Scanning Electron Microscope (SEM) and evolution in microstructures of the solder were characterized using Electron Back-scattered Diffraction (EBSD).The results reveal that the thermal fatigue process consists of a strain hardening stage and a consequent accelerating fracture stage. During the initial cycles, strain hardening of the solder keeps developing, until it becomes balanced with the dynamic recovery. Due to the strain concentration, damage of the solder around the joint interface is serious and cannot release through recovery, inducing microcracks at the corner of the solder joint. After that, the nominal strength of the solder joint decreases gradually, and the damage rate accelerates with increasing cycles. The fracture surface also consists of two regions, one is covered by trace of friction and the other is similar to the shear fracture surface. Plastic deformation, grain rotation and grain coalesce occur in the solder during the thermal fatigue process, while grain subdivision or recrystallization was not observed, because the dynamic recovery keeps the strain energy of the solder at a low level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang QK, Zhang ZF. In situ observations on creep fatigue fracture behavior of Sn-4Ag/Cu solder joints. Acta Mater. 2011;59:6017–28.

    Article  Google Scholar 

  2. Evans JW. A guide to lead-free solders. 1st ed. London: Springer; 2005.

    Google Scholar 

  3. Zhang QK, Zhang ZF. In situ tensile creep behaviors of Sn-4Ag/Cu solder joints revealed by electron backscatter diffraction. Scripta Mater. 2012;67:289–92.

    Article  Google Scholar 

  4. Guo F, Choi S, Subramanian KN, Bieler TR, Lucas JP, Achari A, et al. Evaluation of creep behavior of near-eutectic Sn-Ag solders containing small amount of alloy additions. Mater Sci Eng A. 2003;351:190–9.

    Article  Google Scholar 

  5. Telang AU, Bieler TR, Crimp MA. Grain boundary sliding on near-7 degrees, 14 degrees, and 22 degrees special boundaries during thermornechanical cycling in surface-mount lead-free solder joint specimens. Mater Sci Eng A. 2006;421:22–34.

    Article  Google Scholar 

  6. Abd El-Rehim AF. Effect of grain size on the primary and secondary creep behavior of Sn-3 wt.% Bi alloy. J Mater Sci. 2008;43:1444–50.

    Article  Google Scholar 

  7. Terashima S, Takahama K, Nozaki M, Tanaka M. Recrystallization of Sn grains due to thermal strain in Sn-1.2Ag-0.5Cu-0.05Ni solder. Mater Trans. 2004;45:1383–90.

    Article  Google Scholar 

  8. Telang AU, Bieler TR, Zamiri A, Pourboghrat F. Incremental recrystallization/grain growth driven by elastic strain energy release in a thermomechanically fatigued lead-free solder joint. Acta Mater. 2007;55:2265–77.

    Article  Google Scholar 

  9. Li J, Xu H, Mattila TT, Kivilahti JK, Laurila T, Paulasto-Kröckel M. Simulation of dynamic recrystallization in solder interconnections during thermal cycling. Comput Mater Sci. 2010;50:690–7.

    Article  Google Scholar 

  10. Choi S, Subramanian KN, Lucas JP, Bieler TR. Thermomechanical fatigue behavior of Sn-Ag solder joints. J Electron Mater. 2000;29:1249–57.

    Article  Google Scholar 

  11. Telang AU, Bieler TR, Zamiri A, Pourboghrat F. Incremental recrystallization/grain growth driven by elastic strain energy release in a thermomechanically fatigued lead-free solder joint. Acta Mater. 2007;55:2265–77.

    Article  Google Scholar 

  12. Li J, Xu H, Mattila TT, Kivilahti JK, Laurila T, Paulasto-Kröckel M. Simulation of dynamic recrystallization in solder interconnections during thermal cycling. Comput Mater Sci. 2010;50:690–7.

    Article  Google Scholar 

  13. Lee JG, Telang A, Subramanian KN, Bieler TR. Modeling thermomechanical fatigue behavior of Sn-Ag solder joints. J Electron Mater. 2002;31:1152–9.

    Article  Google Scholar 

  14. Sidhu RS, Chawla N. Thermal fatigue behavior of Sn-Rich (Pb-free) solders. Metall Mater Trans A. 2008;39A:799–810.

    Article  Google Scholar 

  15. Choi S, Lee JG, Subramanian KN, Lucas JP, Bieler TR. Microstructural characterization of damage in thermomechanically fatigued Sn-Ag based solder joints. J Electron Mater. 2002;31:292–7.

    Article  Google Scholar 

  16. Terashima S, Tanaka M, Tatsumi K. Thermal fatigue properties and grain boundary character distribution in Sn-xAg-0·5Cu (x = 1, 1·2 and 3) lead free solder interconnects. Sci Technol Weld Joining. 2008;31:60–5.

    Article  Google Scholar 

  17. Chawla N. Thermomechanical behaviour of environmentally benign Pb-free solders. Int Mater Rev. 2009;54:368–84.

    Article  Google Scholar 

  18. Zhang QK, Zhang ZF. Thermal fatigue behaviors of Sn–4Ag/Cu solder joints at low strain amplitude. Mater Sci Eng A. 2013;580:374–84.

    Article  Google Scholar 

  19. Dao M, Chollacoop N, Van Vliet KJ, Venkatesh TA, Suresh S. Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 2001;49:3899–918.

    Article  Google Scholar 

  20. Deng X, Sidhu RS, Johnson P, Chawla N. Influence of reflow and thermal aging on the shear strength and fracture behavior of Sn-3.5Ag solder/Cu joints. Metall Mater Trans A. 2005;36A:55–64.

    Google Scholar 

  21. Shen YL, Chawla N, Ege ES, Deng X. Deformation analysis of lap-shear testing of solder joints. Acta Mater. 2005;53:2633–42.

    Article  Google Scholar 

  22. Moy WH, Shen YL. On the failure path in shear-tested solder joints. Microelectron Reliab. 2007;47:1300–5.

    Article  Google Scholar 

  23. Matin MA, Vellinga WP, Geers MGD. Thermomechanical fatigue damage evolution in SAC solder joints. Mater Sci Eng A. 2007;445:73–85.

    Article  Google Scholar 

  24. Rhee H, Subramanian KN. Effects of prestrain, rate of prestrain, and temperature on the stress-relaxation behavior of eutectic Sn-3.5Ag solder joints. J Electron Mater. 2003;32:1310–6.

    Article  Google Scholar 

  25. Lee YH, Lee HT. Shear strength and interfacial microstructure of Sn-Ag-xNi/Cu single shear lap solder joints. Mater Sci Eng A. 2007;444:75–83.

    Article  Google Scholar 

  26. Zhao J, Cheng CQ, Qi L, Chi CY. Kinetics of intermetallic compound layers and shear strength in Bi-bearing SnAgCu/Cu soldering couples. J Alloys Compd. 2009;473:382–8.

    Article  Google Scholar 

  27. Zhang QK, Zhang ZF. Fracture mechanism and strength-influencing factors of Cu/Sn-4Ag solder joints aged for different times. J Alloy Compd. 2009;485:853–61.

    Article  Google Scholar 

  28. Ohguchi KI, Sasaki K, Ishibashi M. A quantitative evaluation of time-independent and time-dependent deformations of lead-free and lead-containing solder alloys. J Electron Mater. 2006;35:132–9.

    Article  Google Scholar 

  29. Mavoori H, Chin J, Vayman S, Moran B, Keer L, Fine M. Creep, stress relaxation, and plastic deformation in Sn-Ag and Sn-Zn eutectic solders. J Electron Mater. 1997;26:783–90.

    Article  Google Scholar 

  30. Jadhav SG, Bieler TR, Subramanian KN, Lucas JP. Stress relaxation behavior of composite and eutectic Sn-Ag solder joints. J Electron Mater. 2001;30:1197–205.

    Article  Google Scholar 

  31. Kerr M, Chawla N. Creep deformation behavior of Sn-3.5Ag solder/Cu couple at small length scales. Acta Mater. 2004;52:4527–35.

    Article  Google Scholar 

  32. Shohji I, Yoshida T, Takahashi T, Hioki S. Tensile properties of Sn-Ag based lead-free solders and strain rate sensitivity. Mater Sci Eng A. 2004;366:50–5.

    Article  Google Scholar 

  33. Fouassier O, Heintz JM, Chazelas J, Geffroy PM, Silvain JF. Microstructural evolution and mechanical properties of SnAgCu alloys. J Appl Phys. 2006;100:043519.

    Article  Google Scholar 

  34. Zhu FL, Zhang HH, Guan RF, Liu S. Effects of temperature and strain rate on mechanical property of Sn96.5Ag3Cu0.5. Microelectron Eng. 2007;84:144–50.

    Article  Google Scholar 

  35. McCabe RJ, Fine ME. Creep of tin, Sb-solution-strengthened tin, and Sb Sn–precipitate-strengthened tin. Metall Mater Trans A. 2002;33:1531–9.

    Article  Google Scholar 

  36. Haung ML, Wang L, Wu CML. Creep behavior of eutectic Sn-Ag lead-free solder alloy. J Mater Res. 2002;17:2897–903.

    Article  Google Scholar 

  37. Sharma P, Dasgupta A. Micro-mechanics of creep-fatigue damage in PB-SN solder due to thermal cycling—part II: mechanistic insights and cyclic durability predictions from monotonic data. J Electron Pack. 2002;124:298–304.

    Article  Google Scholar 

  38. Sharma P, Dasgupta A. Micro-mechanics of creep-fatigue damage in Pb-Sn solder due to thermal cycling-part I: formulation. J Electron Pack. 2002;124:292–7.

    Article  Google Scholar 

  39. Kashyap BP, Murty GS. Experimental constitutive relations for high-temperature deformation of a Pb-Sn eutectic alloy. Mater Sci Eng. 1981;50:205–13.

    Article  Google Scholar 

  40. Wu X, Tao N, Hong Y, Xu B, Lu J, Lu K. Microstructure and evolution of mechanically-induced ultra fine grain in surface layer of AL-alloy subjected to USSP. Acta Mater. 2002;50:2075–84.

    Article  Google Scholar 

  41. Liu Q, Jensen DJ, Hansen N. Effect of grain orientation on deformation structure in cold-rolled polycrystalline aluminum. Acta Mater. 1998;46:5819–38.

    Article  Google Scholar 

  42. Hansen N, Huang X, Hughes DA. Microstructural evolution and hardening parameters. Mater Sci Eng A. 2001;317:3–11.

    Article  Google Scholar 

  43. Deng X, Chawla N, Chawla KK, Koopman M. Deformation behavior of (Cu, Ag)-Sn intermetallics by nanoindentation. Acta Mater. 2004;52:4291–303.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingke Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, Q. (2016). Thermal Fatigue Behavior of Sn–Ag/Cu Solder Joints. In: Investigations on Microstructure and Mechanical Properties of the Cu/Pb-free Solder Joint Interfaces. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48823-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48823-2_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48821-8

  • Online ISBN: 978-3-662-48823-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics