Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 745 Accesses

Abstract

The creep fatigue behavior of Sn–Ag/Cu and Sn–Bi/Cu solder joints was investigated in this chapter. The creep fatigue processes of the lead-free solder joints usually consist of a strain hardening stage, a steady deformation stage, and an accelerating fracture stage. For the Sn–4Ag/Cu solder joints, the strain increases rapidly during the initial few cycles, until strain hardening reaches a saturated state. After that the strain increases linearly with increasing cycles, deformation of the solder keeps developing, strain concentration occurs around the solder/Cu6Sn5 interface and generates initial microcracks. When the microcracks evolve into long cracks, the creep fatigue failure is accelerated and the solder joints fracture along the joint interface after a few more cycles. Grain subdivision occurs in the solder when the plastic strain reaches a certain threshold, then grain rotation and subdivision on a finer scale take place to accommodate further straining. The Sn–58Bi/Cu solder joints have three similar stages, only the strain increases exponentially with increasing cycles, and final fracture occurs in the solder. The major deformation mechanism of the SnBi solder is grain-boundary sliding, plastic deformation concentrates at the grain boundary, while the deformation inside the solder grain is little.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang QK, Zhang ZF. In situ observations on creep fatigue fracture behavior of Sn–4Ag/Cu solder joints. Acta Mater. 2011;59:6017–28.

    Article  Google Scholar 

  2. Evans JW. A guide to lead-free solders. 1st ed. London: Springer; 2005.

    Google Scholar 

  3. Ohguchi KI, Sasaki K, Ishibashi M. A quantitative evaluation of time-independent and time-dependent deformations of lead-free and lead-containing solder alloys. J Electron Mater. 2006;35:132–9.

    Article  Google Scholar 

  4. Abtew M, Selvaduray G. Lead-free solders in microelectronics. Mater Sci Eng R. 2000;27:95–141.

    Article  Google Scholar 

  5. Mathew MD, Yang H, Movva S, Murty KL. Creep deformation characteristics of tin and tin-based electronic solder alloys. Metall Mater Trans A. 2005;36:99–105.

    Article  Google Scholar 

  6. Haung ML, Wang L, Wu CML. Creep behavior of eutectic Sn–Ag lead-free solder alloy. J Mater Res. 2002;17:2897–903.

    Article  Google Scholar 

  7. Sharma P, Dasgupta A. Micro-mechanics of creep-fatigue damage in PB–SN solder due to thermal cycling—Part II: mechanistic insights and cyclic durability predictions from monotonic data. J Electron Pack. 2002;124:298–304.

    Article  Google Scholar 

  8. Sharma P, Dasgupta A. Micro-mechanics of creep-fatigue damage in Pb–Sn solder due to thermal cycling-Part I: formulation. J Electron Pack. 2002;124:292–7.

    Article  Google Scholar 

  9. Guo F, Choi S, Subramanian KN, Bieler TR, Lucas JP, Achari A, et al. Evaluation of creep behavior of near-eutectic Sn–Ag solders containing small amount of alloy additions. Mater Sci Eng A. 2003;351:190–9.

    Article  Google Scholar 

  10. Zhang Q, Dasgupta A, Haswell P. Creep and high-temperature isothermal fatigue of Pb-free solders. Adv Electron Pack. 2003;1:955–60.

    Google Scholar 

  11. Kerr M, Chawla N. Creep deformation behavior of Sn–3.5Ag solder/Cu couple at small length scales. Acta Mater. 2004;52:4527–35.

    Article  Google Scholar 

  12. Park S, Dhakal R, Lehman L, Cotts E. Measurement of deformations in SnAgCu solder interconnects under in situ thermal loading. Acta Mater. 2007;55:3253–60.

    Article  Google Scholar 

  13. Sun Y, Liang J, Xu ZH, Wang GF, Li XD. In situ observation of small-scale deformation in a lead-free solder alloy. J Electron Mater. 2009;38:400–9.

    Article  Google Scholar 

  14. Lang F, Tanaka H, Munegata O, Taguchi T, Narita T. The effect of strain rate and temperature on the tensile properties of Sn–3.5Ag solder. Mater Charact. 2005;54:223–9.

    Article  Google Scholar 

  15. Shohji I, Yoshida T, Takahashi T, Hioki S. Tensile properties of Sn–Ag based lead-free solders and strain rate sensitivity. Mater Sci Eng A. 2004;366:50–5.

    Article  Google Scholar 

  16. Takemoto T, Matsunawa A, Takahashi M. Tensile test for estimation of thermal fatigue properties of solder alloys. J Mater Sci. 1997;32:4077–84.

    Article  Google Scholar 

  17. Kanchanomai C, Miyashita Y, Mutoh Y, Mannan SL. Influence of frequency on low cycle fatigue behavior of Pb-free solder 96.5Sn–3.5Ag. Mater Sci Eng A. 2003;345:90–98

    Google Scholar 

  18. Wild RN. Fatigue properties of solder joints. Weld J. 1972;51:521–6.

    Google Scholar 

  19. Solomon HD. Low cycle fatigue of Sn96 solder with reference to eutectic solder and a high Pb solder. J Electron Pack. 1991;113:102–8.

    Article  Google Scholar 

  20. Deng X, Sidhu RS, Johnson P, Chawla N. Influence of reflow and thermal aging on the shear strength and fracture behavior of Sn–3.5Ag solder/Cu joints. Metall Mater Trans A. 2005;36A:55–64

    Google Scholar 

  21. Lee YH, Lee HT. Shear strength and interfacial microstructure of Sn–Ag–xNi/Cu single shear lap solder joints. Mater Sci Eng A. 2007;444:75–83.

    Article  Google Scholar 

  22. Zhao J, Cheng CQ, Qi L, Chi CY. Kinetics of intermetallic compound layers and shear strength in Bi-bearing SnAgCu/Cu soldering couples. J Alloys Compd. 2009;473:382–8.

    Article  Google Scholar 

  23. Zhang QK, Zhang ZF. Fracture mechanism and strength-influencing factors of Cu/Sn–4Ag solder joints aged for different times. J Alloy Compd. 2009;485:853–61.

    Article  Google Scholar 

  24. Zhang QK, Zou HF, Zhang ZF. Tensile and fatigue behaviors of aged Cu/Sn–4Ag solder joints. J Electron Mater. 2009;38:852–9.

    Article  Google Scholar 

  25. Wu X, Tao N, Hong Y, Xu B, Lu J, Lu K. Microstructure and evolution of mechanically-induced ultra fine grain in surface layer of AL-alloy subjected to USSP. Acta Mater. 2002;50:2075–84.

    Article  Google Scholar 

  26. Liu Q, Jensen DJ, Hansen N. Effect of grain orientation on deformation structure in cold-rolled polycrystalline aluminum. Acta Mater. 1998;46:5819–38.

    Article  Google Scholar 

  27. Hansen N, Huang X, Hughes DA. Microstructural evolution and hardening parameters. Mater Sci Eng A. 2001;317:3–11.

    Article  Google Scholar 

  28. Kashyap BP, Murty GS. Experimental constitutive relations for high-temperature deformation of a Pb–Sn eutectic alloy. Mater Sci Eng. 1981;50:205–13.

    Article  Google Scholar 

  29. Shine MC, Fox LR. Fatigue of solder joints in surface mount devices, STP 942. Philadelphia, PA: ASTM; 1988. p. 588–610.

    Google Scholar 

  30. Mavoori H, Chin J, Vayman S, Moran B, Keer L, Fine M. Creep, stress relaxation, and plastic deformation in Sn–Ag and Sn–Zn eutectic solders. J Electron Mater. 1997;26:783–90.

    Article  Google Scholar 

  31. Yeung B, Jang JW. Correlation between mechanical tensile properties and microstructure of eutectic Sn–3.5Ag solder. J Mater Sci Lett. 2002;21:723–6.

    Article  Google Scholar 

  32. Dao M, Chollacoop N, Van Vliet KJ, Venkatesh TA, Suresh S. Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 2001;49:3899–918.

    Article  Google Scholar 

  33. Deng X, Chawla N, Chawla KK, Koopman M. Deformation behavior of (Cu, Ag)–Sn intermetallics by nanoindentation. Acta Mater. 2004;52:4291–303.

    Article  Google Scholar 

  34. Matin MA, Vellinga WP, Geers MGD. Microstructure evolution in a Pb-free solder alloy during mechanical fatigue. Mater Sci Eng A. 2006;431:166–74.

    Article  Google Scholar 

  35. Mahmudi R, Geranmayeh AR, Mahmoodi SR, Khalatbari A. Room-temperature indentation creep of lead-free Sn–Bi solder alloys. J Mater Sci Mater Electron. 2007;18:1071–8.

    Article  Google Scholar 

  36. Dutta I. A constitutive model for creep of lead-free solders undergoing strain-enhanced microstructural coarsening: a first report. J Electron Mater. 2003;33:201–7

    Google Scholar 

  37. Telang AU, Bieler TR, Crimp MA. Grain boundary sliding on near-7 degrees, 14 degrees, and 22 degrees special boundaries during thermornechanical cycling in surface-mount lead-free solder joint specimens. Mater Sci Eng A. 2006;421:22–34.

    Article  Google Scholar 

  38. Sherby OD, Taleff EM. Influence of grain size, solute atoms and second-phase particles on creep behavior of polycrystalline solids. Mater Sci Eng A. 2002;322:89–99.

    Article  Google Scholar 

  39. Nabarro FRN. Creep in commercially pure metals. Acta Mater. 2006;54:263–95.

    Article  Google Scholar 

  40. Padmanabhan KA. Grain boundary sliding controlled flow and its relevance to superplasticity in metals, alloys, ceramics and intermetallics and strain-rate dependent flow in nanostructured materials. J Mater Sci. 2009;44:2226–38.

    Article  Google Scholar 

  41. Abd El-Rehim AF, Effect of grain size on the primary and secondary creep behavior of Sn–3 wt% Bi alloy. J Mater Sci. 2008;43:1444–50

    Google Scholar 

  42. Kim KS, Huh SH, Suganuma K. Effects of cooling speed on microstructure and tensile properties of Sn–Ag–Cu alloys. Mater Sci Eng A. 2002;333:106–14.

    Article  Google Scholar 

  43. Zhang QK, Zhu QS, Zou HF, Zhang ZF. Fatigue fracture mechanisms of Cu/lead-free solders interfaces. Mater Sci Eng A. 2010;527:1367–76.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingke Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, Q. (2016). Shear Creep-Fatigue Behavior of Cu/Pb-Free Solder Joints. In: Investigations on Microstructure and Mechanical Properties of the Cu/Pb-free Solder Joint Interfaces. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48823-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48823-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48821-8

  • Online ISBN: 978-3-662-48823-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics