Tensile-Compress Fatigue Behavior of Solder Joints

  • Qingke ZhangEmail author
Part of the Springer Theses book series (Springer Theses)


Tensile-compress fatigue behavior of solder joints were studied in this chapter. The results reveal that under cyclic tension-compression loadings, fatigue lives of the solder joints decrease exponentially with increasing stress amplitude, and the lead-free solder joints have higher lives than the Sn–37Pb/Cu solder joints. Due to the deformation incompatibility, there is strain localization at the solder/Cu interface, fatigue cracks initiate along the solder/Cu interface, then propagate inside the solder around the joint interface or along the interface. The mechanical properties of solder play important roles in the fatigue lives by influencing the crack initiation and propagation path, while the interfacial microstructure determines the cycles of crack propagation by dominating the final fracture.


Fatigue Crack Fatigue Life Solder Joint Solder Alloy Stress Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abtew M, Selvaduray G. Lead-free solders in microelectronics. Mater Sci Eng R. 2000;27:95–141.CrossRefGoogle Scholar
  2. 2.
    Kim HK, Tu KN. Rate of consumption of Cu in soldering accompanied by ripening. Appl Phys Lett. 1995;67:2002–4.CrossRefGoogle Scholar
  3. 3.
    Seah SKW, Wonga EH, Shim VPW. Fatigue crack propagation behavior of lead-free solder joints under high-strain-rate cyclic loading. Script Mater. 2008;59:1239–42.CrossRefGoogle Scholar
  4. 4.
    Erinc M, Assman TM, Schreurs PJG, Geers MGD. Fatigue fracture of SnAgCu solder joints by microstructural modeling. Int J Fract. 2008;152:37–49.CrossRefGoogle Scholar
  5. 5.
    Zhu QS, Zhang ZF, Shang JK, Wang ZG. Fatigue damage mechanisms of copper single crystal/Sn-Ag-Cu interfaces. Mater Sci Eng A. 2006;435–436:588–94.CrossRefGoogle Scholar
  6. 6.
    Anderssona C, Lai Z, Liu J, Jiang H, Yu Y. Comparison of isothermal mechanical fatigue properties of lead-free solder joints and bulk solders. Mater Sci Eng A. 2005;394:20–7.CrossRefGoogle Scholar
  7. 7.
    Zhao J, Mutoh Y, Miyashita Y, Mannan SL. Fatigue crack-growth behavior of Sn-Ag-Cu and Sn-Ag-Cu-Bi lead-free solders. J Electron Mater. 2002;31:879–86.CrossRefGoogle Scholar
  8. 8.
    Kanchanomai C, Mutoh Y. Effect of temperature on isothermal low cycle fatigue properties of Sn-Ag eutectic solder. Mater Sci Eng A. 2004;381:113–20.CrossRefGoogle Scholar
  9. 9.
    Kanchanomai C, Limtrakarn W, Mutoh Y. Fatigue crack growth behavior in Sn-Pb eutectic solder/copper joint under mode I loading. Mech Mater. 2005;37:1166–74.CrossRefGoogle Scholar
  10. 10.
    Laurila T, Vuorinen V, Kivilahti JK. Interfacial reactions between lead-free solders and common base materials. Mater Sci Eng R. 2005;49:1–60.CrossRefGoogle Scholar
  11. 11.
    Zhang QK, Zhu QS, Zou HF, Zhang ZF. Fatigue fracture mechanisms of Cu/lead-free solders interfaces. Mater Sci Eng A. 2010;527:1367–76.CrossRefGoogle Scholar
  12. 12.
    Zhang QK, Zou HF, Zhang ZF. Tensile and fatigue behaviors of aged Cu/Sn-4Ag solder joints. J Electron Mater. 2009;38:852–9.CrossRefGoogle Scholar
  13. 13.
    Zribi A, Clark A, Zavalij L, Borgesem D, Cotts EJ. The growth of intermetallic compounds at Sn-Ag-Cu solder/Cu and Sn-Ag-Cu solder/Ni interfaces and the associated evolution of the solder microstructure. J Electron Mater. 2001;30:1157–64.CrossRefGoogle Scholar
  14. 14.
    Deng X, Piotrowski G, Williams JJ, Chawla N. Influence of initial morphology and thickness of Cu6Sn5 and Cu3Sn intermetallics on growth and evolution during thermal aging of Sn-Ag solder/Cu joints. J Electron Mater. 2003;32:1403–13.CrossRefGoogle Scholar
  15. 15.
    Yang W, Messier RW, Felton LE. Microstructure evolution of eutectic Sn-Ag solder joints. J Electron Mater. 1994;23:765–72.CrossRefGoogle Scholar
  16. 16.
    Ma X, Wang FJ, Qian YY, Yoshida F. Development of Cu-Sn intermetallic compound at Pb-free solder/Cu joint interface. Mater Lett. 2003;57:3361–5.CrossRefGoogle Scholar
  17. 17.
    Bonda NR, Noyan IC. Effect of the specimen size in predicting the mechanical properties of PbSn solder alloys. IEEE Trans Compon Packag Manuf Technol A. 1990;19:208–12.CrossRefGoogle Scholar
  18. 18.
    Yu SP, Hon MH, Wang MC. The adhesive strength of a lead free solder hot-dipped on Cu substrate. J Electron Mater. 2000;29:237–43.CrossRefGoogle Scholar
  19. 19.
    Dao M, Chollacoop N, Van Vliet KJ, Venkatesh TA, Suresh S. Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 2001;49:3899–918.CrossRefGoogle Scholar
  20. 20.
    Deng X, Chawla N, Chawla KK, Koopman M. Deformation behavior of (Cu, Ag)-Sn intermetallics by nanoindentation. Acta Mater. 2004;52:4291–303.CrossRefGoogle Scholar
  21. 21.
    Mei Z, Sunwoo AJ, Morris JW Jr. Analysis of low-temperature intermetallic growth in copper-tin diffusion couples. Metall Trans A. 1992;23:857–64.CrossRefGoogle Scholar
  22. 22.
    Lee HT, Chen MH, Jao HM, Liao TL. Influence of interfacial intermetallic compound on fracture behavior of solder joints. Mater Sci Eng A. 2003;358:134–41.CrossRefGoogle Scholar
  23. 23.
    Vaynman S, Fine ME, Jeannotte DA. Isothermal fatigue of low tin lead based solder. Metall Trans A. 1988;19:1051–9.CrossRefGoogle Scholar
  24. 24.
    Glazer J. Metallurgy of low temperature Pb-free solders for electronic assembly. Int Mater Rev. 1995;40:65–93.CrossRefGoogle Scholar
  25. 25.
    Ding Y, Wang CQ, Tian YH, Li MY. Influence of aging treatment on deformation behavior of 96.5Sn3.5Ag lead-free solder alloy during in situ tensile tests. J Alloys Compd. 2007;428:274–85.CrossRefGoogle Scholar
  26. 26.
    Suna P, Andersson C, Wei XC, Cheng ZN, Shangguan DK, Liu JH. Study of interfacial reactions in Sn-3.5Ag-3.0Bi and Sn-8.0Zn-3.0Bi sandwich structure solder joint with Ni(P)/Cu metallization on Cu substrate. J Alloys Compd. 2007;437:169–79.CrossRefGoogle Scholar
  27. 27.
    Zhao J, Miyashita Y, Mutoh Y. Fatigue crack growth behavior of 96.5Sn-3.5Ag lead-free solder. Int J Fatigue. 2001;23:723–31.CrossRefGoogle Scholar
  28. 28.
    Liu PL, Shang JK. Interfacial segregation of bismuth in copper/tin-bismuth solder interconnect. Script Mater. 2001;44:1019–23.CrossRefGoogle Scholar
  29. 29.
    Liu PL, Shang JK. Interfacial embrittlement by bismuth segregation in copper/tin–bismuth Pb-free solder interconnect. J Mater Res. 2001;16:1651–9.CrossRefGoogle Scholar
  30. 30.
    Zhu QS, Zhang ZF, Wang ZG, Shang JK. Inhibition of interfacial embrittlement at SnBi/Cu single crystal by electrodeposited Ag film. J Mater Res. 2008;23:78–82.CrossRefGoogle Scholar
  31. 31.
    Zou HF, Zhang QK, Zhang ZF. Eliminating interfacial segregation and embrittlement of bismuth in SnBi/Cu joint by alloying Cu substrate. Script Mater. 2009;61:308–11.CrossRefGoogle Scholar
  32. 32.
    Keast VJ, Fontaine AL, Plessis JD. Variability in the segregation of bismuth between grain boundaries in copper. Acta Mater. 2007;55:5149–55.CrossRefGoogle Scholar
  33. 33.
    Zhang QK, Zou HF, Zhang ZF. Improving tensile and fatigue properties of Sn-58Bi/Cu solder joints through alloying substrate. J Mater Res. 2010;25:303–14.CrossRefGoogle Scholar
  34. 34.
    Pang XY, Shang PJ, Wang SQ. Weakening of the Cu/Cu3Sn(100) Interface by Bi Impurities. J Electron Mater. 2010;39:1277–82.CrossRefGoogle Scholar
  35. 35.
    Mei Z, Morris JW Jr. Characterization of eutectic Sn-Bi solder joints. J Electron Mater. 1992;21:599–607.CrossRefGoogle Scholar
  36. 36.
    Glazer J. Microstructure and mechanical properties of Pb-free solder alloys for low-cost electronic assembly. A review. J Electron Mater. 1994;23:693–700.CrossRefGoogle Scholar
  37. 37.
    Kerr M, Chawla N. Creep deformation behavior of Sn-3.5Ag solder/Cu couple at small length scales. Acta Mater. 2004;52:4527–35.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.Zhengzhou Research Institute of Mechanical EngineeringZhengzhouChina

Personalised recommendations