Skip to main content

Research Progress in Pb-Free Soldering

  • Chapter
  • First Online:
  • 773 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter, the research background and progress on Pb-free soldering are reviewed. Soldering is the most widely joining technology in microelectronic package, and Pb-free solders were proposed to replace the Sn–Pb solder out of environmental considerations. Thus far, many series of Pb-free solder have been proposed, their interfacial reaction behavior with common substrates and properties of the solder joints were studied, while the damage mechanisms have not been comprehensively revealed. For this reason, in this study a series of experiments were designed to reveal the damage behavior of the solder joints under different loadings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Greig WJ. Integrated circuit packaging, assembly and interconnections (Springer series in advanced microelectronics). New York: Springer; 2007.

    Google Scholar 

  2. Laurila T, Vuorinen V, Kivilahti JK. Interfacial reactions between lead-free solders and common base materials. Mater Sci Eng R. 2005;49:1–60.

    Article  Google Scholar 

  3. Tu KN. Solder joint technology: materials, properties, and reliability. New York: Springer; 2007. p. 386.

    Google Scholar 

  4. Abtew M, Selvaduray G. Lead-free solders in microelectronics. Mater Sci Eng R. 2000;27:95–141.

    Article  Google Scholar 

  5. Zeng K, Tu KN. Six cases of reliability study of Pb-free solder joints in electronic packaging technology. Mater Sci Eng R. 2002;38:55–105.

    Article  Google Scholar 

  6. Massalski TB, Okamoto H. Binary alloy phase diagrams. 2nd ed. New York: ASM International; 1990.

    Google Scholar 

  7. McCormack M, Jin S, Kammlott GW, Chen HS. New Pb-free solder alloy with superior mechanical properties. Appl Phys Lett. 1993;63:15–7.

    Article  Google Scholar 

  8. Ventura T, Terzi S, Rappaz M, Dahle AK. Effects of solidification kinetics on microstructure formation in binary Sn–Cu solder alloys. Acta Mater. 2011;59:1651–8.

    Article  Google Scholar 

  9. Grossmann G, Tharian J, Jud P, Sennhauser U. Microstructural investigation of lead-free BGAs soldered with tin-lead solder. Solder Surf Mt Technol. 2005;17:10–21.

    Article  Google Scholar 

  10. Loomans ME, Fine ME. Tin-silver-copper eutectic temperature and composition. Metall Mater Trans A. 2000;31:1155–62.

    Article  Google Scholar 

  11. Moon KW, Boettinger WJ, Kattner UR, Biancaniello FS, Handwerker CA. Experimental and thermodynamic assessment of Sn–Ag–Cu solder alloys. J Electron Mater. 2000;29:1122–36.

    Article  Google Scholar 

  12. Mei Z, Morris JW Jr. Characterization of eutectic Sn–Bi solder joints. J Electron Mater. 1992;21:599–607.

    Article  Google Scholar 

  13. Glazer J. Microstructure and mechanical properties of Pb-free solder alloys for low-cost electronic assembly: a review. J Electron Mater. 1994;23:693–700.

    Article  Google Scholar 

  14. Liu PL, Shang JK. Interfacial embrittlement by bismuth segregation in copper/tin–bismuth Pb-free solder interconnect. J Mater Res. 2001;16:1651–9.

    Article  Google Scholar 

  15. Lin HJ, Chuang TH. Intermetallic reactions in reflowed and aged Sn–9Zn solder ball grid array packages with Au/Ni/Cu and Ag/Cu pads. J Electron Mater. 2006;35:154–64.

    Article  Google Scholar 

  16. Laurila T, Vuorinen V, Paulasto-Kröckel M. Impurity and alloying effects on interfacial reaction layers in Pb-free soldering. Mater Sci Eng R. 2010;68:1–38.

    Article  Google Scholar 

  17. Kang JS, Gagliano RA, Ghosh G, Fine ME. Isothermal solidification of Cu/Sn diffusion couples to form thin-solder joints. J Electron Mater. 2002;31:1238–43.

    Article  Google Scholar 

  18. Larsson AK, Stenberg L, Lidin S. The superstructure of domain-twinned eta’-Cu6Sn5. Acta Crystallogr B. 1994;50:636–43.

    Article  Google Scholar 

  19. Larsson AK, Stenberg L, Lidin S. Crystal-structure modulations in eta-Cu5Sn4. Z Kristallogr. 1995;210:832–7.

    Google Scholar 

  20. Gao F, Nishikawa H, Takemoto T. Intermetallics evolution in Sn–3.5Ag based lead-free solder matrix on an OSPCu finish. J Electron Mater. 2007;36:1630–4.

    Article  Google Scholar 

  21. Yoon JW, Lim JH, Lee HJ, Joo J, Jung SB, Moon WC. Interfacial reactions and joint strength of Sn–37Pb and Sn–3.5Ag solders with immersion Ag-plated Cu substrate during aging at 150 °C. J Mater Res. 2006;21:3196–204.

    Article  Google Scholar 

  22. Tseng HW, Liu CY. Evolution of Ag3Sn compound formation in Ni/Sn5Ag/Cu solder joint. Mater Lett. 2008;62:3887–9.

    Article  Google Scholar 

  23. Song JM, Lin JJ, Huang CF, Chuang HY. Crystallization, morphology and distribution of Ag3Sn in Sn–Ag–Cu alloys and their influence on the vibration fracture properties. Mater Sci Eng A. 2007;466:9–17.

    Article  Google Scholar 

  24. Henderson DW, Gosselin T, Sarkhel A, Kang SK, Choi WK, Shih DY, Goldsmith C, Puttlitz KJ. Ag3Sn plate formation in the solidification of near ternary eutectic Sn–Ag–Cu alloys. J Mater Res. 2002;17:2775–8.

    Article  Google Scholar 

  25. Zou HF, Yang HJ, Tan J, Zhang ZF. Preferential growth and orientation relationship of Ag3Sn grains formed between molten Sn and (001) Ag single crystal. J Mater Res. 2009;24:2141–4.

    Article  Google Scholar 

  26. Gur D, Bamberger M. Reactive isothermal solidification in the Ni–Sn system. Acta Mater. 1998;46:4917–23.

    Article  Google Scholar 

  27. Ghosh G. Interfacial microstructure and the kinetics of interfacial reaction in diffusion couples between Sn–Pb solder and Cu/Ni/Pd metallization. Acta Mater. 2000;48:3719–38.

    Article  Google Scholar 

  28. Görlich J, Baither D, Schmitz G. Reaction kinetics of Ni/Sn soldering reaction. Acta Mater. 2010;58:3187–97.

    Article  Google Scholar 

  29. Li JF, Mannan SH, Clode MP, Chen K, Whalley DC, Liu C, Hutt DA. Comparison of interfacial reactions of Ni and Ni–P in extended contact with liquid Sn–Bi-based solders. Acta Mater. 2007;55:737–52.

    Article  Google Scholar 

  30. Bader S, Gust W, Hieber H. Rapid formation of intermetallic compounds by interdiffusion in the Cu–Sn and Ni–Sn systems. Acta Metall Mater. 1995;43:329–37.

    Google Scholar 

  31. Dybkov VI. Effect of dissolution on the Ni3Sn4 growth kinetics at the interface of Ni and liquid Sn-base solders. Solid State Phenom. 2008;138:153–8.

    Article  Google Scholar 

  32. Chan YC, Yang D. Failure mechanisms of solder interconnects under current stressing in advanced electronic packages. Prog Mater Sci. 2010;55:428–75.

    Article  Google Scholar 

  33. Evans JW. A guide to lead-free solders. 1st ed. London: Springer; 2005.

    Google Scholar 

  34. Ohguchi KI, Sasaki K, Ishibashi M. A quantitative evaluation of time-independent and time-dependent deformations of lead-free and lead-containing solder alloys. J Electron Mater. 2006;35:132–9.

    Article  Google Scholar 

  35. Park S, Dhakal R, Lehman L, Cotts E. Measurement of deformations in SnAgCu solder interconnects under in situ thermal loading. Acta Mater. 2007;55:3253–60.

    Article  Google Scholar 

  36. Frear DR. The mechanical behavior of interconnect materials for electronic packaging. J Mater. 1996;48:49–53.

    Google Scholar 

  37. Glazer J. Metallurgy of low temperature Pb-free solders for electronic assembly. Int Mater Rev. 1995;40:65–93.

    Article  Google Scholar 

  38. Thwaites CJ. Soft soldering handbook. International Tin Research Institute, Publication No. 533; 1977.

    Google Scholar 

  39. Yamagishi Y, Ochiai M, Ueda H, Nakanishi T, Kitazima M. Pb-free solder of Sn–58Bi improved with Ag. In: Proceedings of the 9th international microelectronics conference, Omiya, Japan. 1996. pp. 252–5.

    Google Scholar 

  40. Tojima K. Wetting characteristics of lead-free solders, senior project report. Materials Engineering Department, San Jose State University, May 1999.

    Google Scholar 

  41. Hua F, Glazer J. Lead-free solders for electronic assembly, design and reliability of solders and solder interconnections. In: Mahidhara RK, Frear DR, Sastry SML, Liaw KL, Winterbottom WL, editors. The minerals, metals and materials society. 1997. pp. 65–74.

    Google Scholar 

  42. Andersson C, Sun P, Liu JH. Tensile properties and microstructural characterization of Sn–0.7Cu–0.4Co bulk solder alloy for electronics applications. J Alloys Compd. 2008;457:97–105.

    Article  Google Scholar 

  43. Shohji I, Yoshida T, Takahashi T, Hioki S. Tensile properties of Sn–Ag based lead-free solders and strain rate sensitivity. Mater Sci Eng A. 2004;366:50–5.

    Article  Google Scholar 

  44. Fouassier O, Heintz JM, Chazelas J, Geffroy PM, Silvain JF. Microstructural evolution and mechanical properties of SnAgCu alloys. J Appl Phys. 2006;100:043519.

    Article  Google Scholar 

  45. Zhu FL, Zhang HH, Guan RF, Liu S. Effects of temperature and strain rate on mechanical property of Sn96.5Ag3Cu0.5. Microelectron Eng. 2007;84:144–50.

    Article  Google Scholar 

  46. Mavoori H, Chin J, Vayman S, Moran B, Keer L, Fine M. Creep, stress relaxation, and plastic deformation in Sn–Ag and Sn–Zn eutectic solders. J Electron Mater. 1997;26:783–90.

    Article  Google Scholar 

  47. Ochoa F, Willlams JJ, Chawla N. Effects of cooling rate on the microstructure and tensile behavior of a Sn–3.5wt.%Ag solder. J Electron Mater. 2003;32:1414–20.

    Article  Google Scholar 

  48. Schoeller H, Bansal S, Knobloch A, Shaddock D, Cho J. Microstructure evolution and the constitutive relations of high-temperature solders. J Electron Mater. 2009;38:802–9.

    Article  Google Scholar 

  49. ASM International. Electronic materials handbook, vol. 1. Packaging Materials Park, OH: ASM International; 1989. p. 640.

    Google Scholar 

  50. Solder alloy data: mechanical properties of solders and soldered joints. International Tin Research Institute, Uxbridge, England, p. 60.

    Google Scholar 

  51. Tomlinson WJ, Collier I. The mechanical properties and microstructures of copper and brass joints soldered with eutectic tin-bismuth solder. J Mater Sci. 1987;22:1835–9.

    Article  Google Scholar 

  52. Artaki I, Jackson AM, Vianco PT. Evaluation of lead-free joints in electronic assemblies. J Electron Mater. 1994;23:757–64.

    Article  Google Scholar 

  53. Ma HT. Constitutive models of creep for lead-free solders. J Mater Sci. 2009;44:3841–51.

    Article  Google Scholar 

  54. Morris JW Jr, Goldstein JLF, Mei Z. Microstructure and mechanical properties of Sn–In and Sn–Bi solders. J Electron Mater. 1993;22:25–7.

    Article  Google Scholar 

  55. Mukherjee AK, Bird JE, Dorn JE. Experimental correlations for high-temperature creep. Trans Am Soc Met. 1969;62:155–79.

    Google Scholar 

  56. Hertzberg RW. Deformation and fracture mechanics of engineering materials. 4th ed. New York: Wiley; 1996.

    Google Scholar 

  57. Chen ZG, Shi YW. Xia ZD. Constitutive relations on creep for SnAgCuRE lead-free solder joints. 2004;33:964–71.

    Google Scholar 

  58. Zhang KK, Lwang Y, Fan YL, Zhang X. Research on creep properties of Sn2.5Ag0.7CuXRE lead-free soldered joints for surface mount technology. Mater Sci. 2007;353–358:2912–5.

    Google Scholar 

  59. Ma HT, Suhling JC. A review of mechanical properties of lead-free solders for electronic packaging. J Mater Sci. 2009;44:1141–58.

    Article  Google Scholar 

  60. Yan YF, Ji LQ, Zhang KK, Yan HX, Feng LF. Foundation of steady state creep constitutive equation of SnCu soldered joints. Trans China Weld Inst. 2007;28(9):75–9.

    Google Scholar 

  61. Igoshev VI, Kleiman JI. Creep phenomena in lead-free solders. J Electron Mater. 2000;29:244–50.

    Article  Google Scholar 

  62. Xiao Q, Armstrong WD. Tensile creep and microstructural characterization of bulk Sn3.9Ag0.6Cu lead-free solder. J Electron Mater. 2005;34:196–211.

    Article  Google Scholar 

  63. Wiese S, Schubert A, Walter H, Dudek R, Feustel F, Meusel E, Michel B. Constitutive behavior of lead-free solders vs. lead containing solders–experiments on bulk specimens and flip-chip joints. In: Proceeding of the 51st electronic components and technology conference, pp. 890–902.

    Google Scholar 

  64. Clech JP. Review and analysis of lead-free materials properties, NIST. Available at http://www.metallurgy.nist.gov/solder/clech/Sn-Ag-Cu_Main.htm.

  65. Vianco PT. Fatigue and creep of lead-free solder alloys: fundamental properties. 1st edn. New York: ASM International; 2006.

    Google Scholar 

  66. Pang JHL, Xiong BS, Low TH. Creep and fatigue characterization of lead-free 95.5Sn–3.8Ag–0.7Cu solder. In: Proceeding of 54th electronic components and technology conference. 2004. pp. 1333–7.

    Google Scholar 

  67. Shi YW, Liu JP, Yan YF, Xia ZD, Lei YP, Guo F, Li XY. Creep properties of composite solders reinforced with nano- and microsized particles. J Electron Mater. 2008;37:507–17.

    Article  Google Scholar 

  68. Shi YW, Liu JP, Xia ZD, Lei YP, Guo F, Li XY. Creep property of composite solders reinforced by nano-sized particles. J Mater Sci: Mater Electron. 2008;19:349–56.

    Google Scholar 

  69. Guo F, Lee J, Lucas JP, Subramanian KN, Bieler TR. Creep properties of eutectic Sn–3.5Ag solder joints reinforced with mechanically incorporated Ni particles. J Electron Mater. 2001;30:1222–7.

    Article  Google Scholar 

  70. Tai F, Guo F, Liu JP, Xia ZD, Shi YW, Lei YP, Li XY. Creep properties of Sn–0.7Cu composite solder joints reinforced with nano-sized Ag particles. Solder Surf Mt Technol. 2010;22:50–6.

    Google Scholar 

  71. Nozaki M, Sakane M, Tsukada Y. Crack propagation behavior of Sn–3.5Ag solder in low cycle fatigue. Int J Fatigue. 2008;30:1729–36.

    Article  Google Scholar 

  72. Arfaei B, Cotts E. Correlations between the microstructure and fatigue life of near-eutectic Sn–Ag–Cu Pb-free solders. J Electron Mater. 2009;38:2617–27.

    Article  Google Scholar 

  73. Zhao J, Mutoh Y, Miyashita Y, Wang L. Fatigue crack growth behavior of Sn–Pb and Sn-based lead-free solders. Eng Fract Mech. 2003;70:2187–97.

    Article  Google Scholar 

  74. Kanchanomai C, Miyashita Y, Mutoh Y, Mannan SL. Influence of frequency on low cycle fatigue behavior of Pb-free solder 96.5Sn–3.5Ag. Mater Sci Eng A. 2003;345:90–8.

    Google Scholar 

  75. Kanchanomai C, Mutoh Y. Low-cycle fatigue prediction model for Pb-free solder 96.5Sn–3.5Ag. J Electron Mater. 2004;33:329–33.

    Article  Google Scholar 

  76. Pang JHL, Xiong BS, Low TH. Low cycle fatigue study of lead free 99.3Sn–0.7Cu solder alloy. Int J Fatigue. 2004;26:865–72.

    Article  Google Scholar 

  77. Pang JHL, Xiong BS, Low TH. Low cycle fatigue models for lead-free solders. Thin Solid Films. 2004;462–463:408–12.

    Article  Google Scholar 

  78. Shang JK, Zeng QL, Zhang L, Zhu QS. Mechanical fatigue of Sn-rich Pb-free solder alloys. J Mater Sci: Mater Electron. 2007;18:211–27.

    Google Scholar 

  79. Takemoto T, Matsunawa A, Takahashi M. Tensile test for estimation of thermal fatigue properties of solder alloys. J Mater Sci. 1997;32:4077–84.

    Article  Google Scholar 

  80. Lea C. A scientific guide to surface mount technology. GB-Port Erin, British Isles: Electrochemical Publications Ltd; 1988.

    Google Scholar 

  81. Kikuchi S, Nishimura M, Suetsugu K, Ikari T, Matsushige K. Strength of bonding interface in lead-free Sn alloy solders. Mater Sci Eng A. 2001;319–321:475–9.

    Article  Google Scholar 

  82. Lee HT, Chen MH, Jao HM, Liao TL. Influence of interfacial intermetallic compound on fracture behavior of solder joints. Mater Sci Eng A. 2003;358:134–41.

    Article  Google Scholar 

  83. Lee HT, Lee YH. Adhesive strength and tensile fracture of Ni particle enhanced Sn–Ag composite solder joints. Mater Sci Eng A. 2006;419:172–80.

    Article  Google Scholar 

  84. Zou HF, Zhu QS, Zhang ZF. Growth kinetics of intermetallic compounds and tensile properties of Sn–Ag–Cu/Ag single crystal joint. J Alloy Compd. 2008;461:410–7.

    Article  Google Scholar 

  85. Dao M, Chollacoop N, Van Vliet KJ, Venkatesh TA, Suresh S. Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 2001;49:3899–918.

    Article  Google Scholar 

  86. Deng X, Chawla N, Chawla KK, Koopman M. Deformation behavior of (Cu, Ag)–Sn intermetallics by nanoindentation. Acta Mater. 2004;52:4291–303.

    Article  Google Scholar 

  87. Deng X, Sidhu RS, Johnson P, Chawla N. Influence of reflow and thermal aging on the shear strength and fracture behavior of Sn–3.5Ag solder/Cu joints. Metall Mater Trans A. 2005;36A:55–64.

    Google Scholar 

  88. Kima KS, Huh SH, Suganuma K. Effects of intermetallic compounds on properties of Sn–Ag–Cu lead-free soldered joints. J Alloys Compd. 2003;352:226–36.

    Article  Google Scholar 

  89. Yoon JW, Kim SW, Jung SB. Interfacial reaction and mechanical properties of eutectic Sn–0.7Cu/Ni BGA solder joints during isothermal long-term aging. J Alloys Compd. 2005;391:82–9.

    Article  Google Scholar 

  90. Choi WK, Kim JH, Jeong SW, Lee HM. Interfacial microstructure and joint strength of Sn–3.5Ag-X (X = Cu, In, Ni) solder joint. J Mater Res. 2002;17:43–51.

    Article  Google Scholar 

  91. Kim SW, Yoon JW, Jung SB. Interfacial reactions and shear strengths between Sn–Ag-based Pb-free solder balls and Au/EN/Cu metallization. J Electron Mater. 2004;33:1182–9.

    Article  Google Scholar 

  92. Ahat S, Sheng M, Le L. Microstructure and shear strength evolution of SnAg/Cu surface mount solder joint during aging. J Electron Mater. 2001;30:1317–22.

    Article  Google Scholar 

  93. Lee YH, Lee HT. Shear strength and interfacial microstructure of Sn–Ag–xNi/Cu single shear lap solder joints. Mater Sci Eng A. 2007;444:75–83.

    Article  Google Scholar 

  94. Anderson IE, Harringa JL. Elevated temperature aging of solder joints based on Sn–Ag–Cu: effects on joint microstructure and shear strength. J Electron Mater. 2004;33:1485–96.

    Article  Google Scholar 

  95. Zou HF, Zhang ZF. Ductile-to-brittle transition induced by increasing strain rate in Sn–3Cu/Cu joints. J Mater Res. 2008;23:1614–7.

    Article  Google Scholar 

  96. Fields RJ, Low SR. Physical and mechanical properties of intermetallic compounds commonly found in solder joints. Metallurgy Division of National Institute of Standards and Technology (NIST), USA, Technical paper, 2001.

    Google Scholar 

  97. Frear DR, Burchett SN, Morgan HS, Lau JH. The mechanics of solder alloy interconnects. 1st ed. New York: Springer; 1994.

    Google Scholar 

  98. Wang ZX, Dutta I, Majumdara BS. Thermal cycle response of a lead-free solder reinforced with adaptive shape memory alloy. Mater Sci Eng A. 2006;421:133–42.

    Article  Google Scholar 

  99. Towashiraporn P, Gall K, Subbarayan G, McIlvanie B, Hunter BC, Love D, Sullivan B. Power cycling thermal fatigue of Sn–Pb solder joints on a chip scale package. Inter J Fatigue. 2004;26:497–510.

    Article  Google Scholar 

  100. Guo HY, Guo JD, Shang JK. Influence of thermal cycling on the thermal resistance of solder interfaces. J Electron Mater. 2009;38:2470–8.

    Article  Google Scholar 

  101. Kobayashi T, Lee A, Subramanian KN. Impact behavior of thermomechanically fatigued Sn-based solder joints. J Electron Mater. 2009;38:2659–67.

    Article  Google Scholar 

  102. Seah SKW, Wonga EH, Shim VPW. Fatigue crack propagation behavior of lead-free solder joints under high-strain-rate cyclic loading. Script Mater. 2008;59:1239–42.

    Article  Google Scholar 

  103. Lehman LP, Xing Y, Bieler TR, Cotts EJ. Cyclic twin nucleation in tin-based solder alloys. Acta Mater. 2010;58:3546–56.

    Article  Google Scholar 

  104. Lee KO, Yu J, Park TS, Lee SB. Low-cycle fatigue characteristics of Sn-based solder joints. J Electron Mater. 2004;33:249–57.

    Article  Google Scholar 

  105. Sundelin JJ, Nurmib ST, Lepistö TK. Recrystallization behaviour of SnAgCu solder joints. Mater Sci Eng A. 2008;474:201–7.

    Article  Google Scholar 

  106. Erinc M, Assman TM, Schreurs PJG, Geers MGD. Fatigue fracture of SnAgCu solder joints by microstructural modeling. Int J Fract. 2008;152:37–49.

    Article  Google Scholar 

  107. Mei Z, Morris JWJR. Superplastic creep of low melting point solder joints. J Electron Mater. 1992;21:401–7.

    Article  Google Scholar 

  108. Kerr M, Chawla N. Creep deformation behavior of Sn–3.5Ag solder/Cu couple at small length scales. Acta Mater. 2004;52:4527–35.

    Article  Google Scholar 

  109. Telang AU, Bieler TR. The orientation imaging microscopy of lead-free Sn–Ag solder joints. JOM. 2005: 44–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingke Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, Q. (2016). Research Progress in Pb-Free Soldering. In: Investigations on Microstructure and Mechanical Properties of the Cu/Pb-free Solder Joint Interfaces. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48823-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48823-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48821-8

  • Online ISBN: 978-3-662-48823-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics