Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1059 Accesses

Abstract

This chapter mainly reviews the development road map of micro-/nanointegrated fabrication technology as well as the previous research work of micro-/nanohierarchical structures. Consequently, the motivation, purpose, and innovative contributions of this thesis are briefly summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Lakes, Materials with structural hierarchy. Nature 361, 511–515 (1993)

    Google Scholar 

  2. V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S.H. Anastasiadis, C. Fotakis, Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf. Adv. Mater. 20, 4049–4054 (2008)

    Google Scholar 

  3. H. Sai, K.W. Tan, K. Hur, E. Asenath-Smith, R. Hovden, Y. Jiang, M. Riccio, D.A. Muller, V. Elser, L.A. Estroff, S.M. Gruner, U. Wiesner, Hierarchical porous polymer scaffolds from block copolymers. Science 341, 530–534 (2013)

    Google Scholar 

  4. R. Blossey, Self-cleaning surfaces-virtual realities. Nat. Mater. 2, 301–306 (2003)

    Google Scholar 

  5. H. Cho, J. Kim, H. Park, J.W. Bang, M.S. Hyun, Y. Bae, L. Ha, D.Y. Kim, S.M. Kang, T.J. Park, S. Seo, M. Choi, K.Y. Suh, Replication of flexible polymer membranes with geometry-controllable nano-apertures via a hierarchical mould-based dewetting. Nat. Commun. 5, 3137 (2014)

    Google Scholar 

  6. F. Xia, L. Jiang, Bio-inspired, smart, multiscale interfacial materials. Adv. Mater. 20, 2842–2858 (2008)

    Google Scholar 

  7. W.R. Wei, M.L. Tsai, S.T. Ho, S.H. Tai, C.R. Ho, S.H. Tsai, C.W. Liu, R.J. Chung, J.H. He, Above-11 %-efficiency organic-inorganic hybrid solar cells with omnidirectional harvesting characteristics by employing hierarchical photon-trapping structures. Nano Lett. 13, 3658–3663 (2013)

    Google Scholar 

  8. G.D. Bixler, B. Bhushan, Bioinspired rice leaf and butterfly wing surface structures combining sharkskin and lotus effects. Soft Matter. 8, 11271–11284 (2012)

    Google Scholar 

  9. Y.Y. Yan, N. Gao, W. Barthlott, Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces. Adv. Colloid Interface Sci. 169, 80–105 (2011)

    Google Scholar 

  10. W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997)

    Google Scholar 

  11. Z. Guo, W. Liu, Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure. Plant Sci. 172, 1103–1112 (2007)

    Google Scholar 

  12. B. Bhushan, Y.C. Jung, K. Koch, Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philos. Trans. Roy. Soc. A. 367, 1631–1672 (2009)

    Google Scholar 

  13. Y. Zhang, Y. Chen, L. Shi, J. Li, and Z. Guo, Recent progress of double-structural and functional materials with special wettability. J. Mater. Chem. 22, 799–815 (2012)

    Google Scholar 

  14. B. Bhushan, Y.C. Jung, Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 56, 1–108 (2011)

    Google Scholar 

  15. D. Byun, J. Hong, Saputra, J.H. Ko, Y.J. Lee, H.C. Park, B.K. Byun, J.R. Lukes, Wetting characteristics of insect wing surfaces. J. Bionic Eng. 6, 63–70 (2009)

    Google Scholar 

  16. S.M. Lee, J. Üpping, A. Bielawny, and M. Knez, Structure-based color of natural petals discriminated by polymer replication. ACS Appl. Mater. Interfaces. 3, 30–34 (2011)

    Google Scholar 

  17. K. Autumn, M. Sitti, Y.A. Liang, A.M. Peattie, W.R. Hansen, S. Sponberg, T.W. Kenny, R. Fearing, J.N. Israelachvili, R.J. Full, Evidence for van der Waals adhesion in gecko setae. PNAS 99, 12252–12256 (2002)

    Google Scholar 

  18. Y. Takezawa, H. Imai, Bottom-up synthesis of titanate nanosheets with hierarchical structures and a high specific surface area, Small 2, 390–393 (2006)

    Google Scholar 

  19. H. Yang, X. Dou, Y. Fang, P. Jiang, Self-assembled biomimetic superhydrophobic hierarchical arrays. J. Colloid Interface Sci. 405, 51–57 (2013)

    Google Scholar 

  20. J. Liu, J. Zou, L. Zhai, Bottom-up assembly of poly(3-hexylthiophene)on carbon nanotubes: 2D building blocks fornanoscale circuits. Macromol. Rapid Commun. 30, 1387–1391 (2009)

    Google Scholar 

  21. J.S. Na, B. Gong, G. Scarel, G.N. Parsons, Surface polarity shielding and hierarchical ZnO nano-architectures produced using sequential hydrothermal crystal synthesis and thin film atomic layer deposition. ACS Nano 3, 3191–3199 (2009)

    Google Scholar 

  22. Q. Dong, H. Su, W. Cao, D. Zhang, Q. Guo, Y. Lai, Synthesis and characterizations of hierarchical biomorphic titania oxide by a bio-inspired bottom-up assembly solution technique. J. Solid State Chem. 180, 949–955 (2007)

    Google Scholar 

  23. J. Xiong, S.N. Das, B. Shin, J.P. Kar, J.H. Choi, J.M. Myoung, Biomimetic hierarchical ZnO structure with superhydrophobic and antireflective properties. J. Colloid Interface Sci. 350, 344–347 (2010)

    Google Scholar 

  24. Y. Tian, C.F. Guo, Y. Guo, Q. Wang, Q. Liu, BiOCl nanowire with hierarchical structure and its Raman features. Appl. Surf. Sci. 258, 1949–1954 (2012)

    Google Scholar 

  25. Y. Rahmawan, K.R. Lee, M.W. Moon, K.Y. Suh, 3-D hierarchical wrinkled micro-pillars for anti-cells proliferation surface, in 6th IEEE Nanotechnology Materials and Devices Conference, pp. 416–419, Jeju, Korea, 18–21 Oct 2011

    Google Scholar 

  26. G. Lu, L. Li, S. Li, Y. Qu, H. Tang, X. Yang, Constructing thin polythiophene film composed of aligned lamellae via controlled solvent vapor treatment. Langmuir. 25, 3763–3768 (2009)

    Google Scholar 

  27. S. Tian, L. Li, W. Sun, X. Xia, D. Han, J. Li, C. Gu, Robust adhesion of flower-like few-layer graphene nanoclusters. Sci. Rep. 2, 551 (2012)

    Google Scholar 

  28. K. Ijichi, A. Fukuoka, A. Shimojima, M. Sugiyama, T. Okubo, A combined top-down and bottom-up approach to fabricate silica films with bimodal porosity. Mater. Lett. 65, 828–831 (2011)

    Google Scholar 

  29. Y. Xiu, L. Zhu, D.W. Hess, C.P. Wong, Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity. Nano Lett. 7, 3388–3393 (2007)

    Google Scholar 

  30. F. Toor, H.M. Branz, M.R. Page, K.M. Jones, H.C. Yuan, Multi-scale surface texture to improve blue response of nanoporous black silicon solar cells, Appl. Phys. Lett. 99, 103501 (2011)

    Google Scholar 

  31. X. Li, B.K.T ay, P. Miele, A. Brioude, D. Cornu, Fabrication of silicon pyramid/nanowire binary structure with superhydrophobicity. Appl. Surf. Sci. 255, 7147–7152 (2009)

    Google Scholar 

  32. J.P. Lee, S. Choi, S. Park, Extremely superhydrophobic surfaces with micro- and nanostructures fabricated by copper catalytic etching. Langmuir. 27, 809–814 (2011)

    Google Scholar 

  33. Y. He, C. Jiang, H. Yin, J. Chen, W. Yuan, Superhydrophobic silicon surfaces with micro-nano hierarchical structures via deep reactive ion etching and galvanic etching. J. Colloid Interface Sci. 364, 219–229 (2011)

    Google Scholar 

  34. W. Wang, D. Li, M. Tian, Y.C. Lee, R. Yang, Wafer-scale fabrication of silicon nanowire arrays with controllable dimensions. Appl. Surf. Sci. 258, 8649–8655 (2012)

    Google Scholar 

  35. J. Liu, B. Liu, S. Liu, Z. Shen, C. Li, Y. Xia, A simple method to produce dual-scale silicon surfaces for solar cells. Surf. Coat. Technol. 229, 165–167 (2013)

    Google Scholar 

  36. Y. Kwon, N. Patankar, J. Choi, J. Lee, Design of surface hierarchy for extreme hydrophobicity. Langmuir 25, 6129–6136 (2009)

    Google Scholar 

  37. D. Zhang, F. Chen, G. Fang, Q. Yang, D. Xie, G. Qiao, W. Li, J. Si, X. Hou, Wetting characteristics on hierarchical structures patterned by a femtosecond laser. J. Micromech. Microeng. 20, 075029 (2010)

    Google Scholar 

  38. J. Yoo, G. Yu, J. Yi, Large-areamulticrystallinesiliconsolarcellfabricationusingreactiveion etching(RIE). Solar Energy Mater. Solar Cells 95, 2–6 (2011)

    Google Scholar 

  39. B. Cortese, S. D’Amone, M. Manca, I. Viola, R. Cingolani, G. Gigli, Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces. Langmuir 24, 2712–2718 (2008)

    Google Scholar 

  40. Y.H. Huang, J.T. Wu, S.Y. Yang, Direct fabricating patterns using stamping transfer process with PDMS mold of hydrophobic nanostructures on surface of micro-cavity. Microelectron. Eng. 88, 849–854 (2011)

    Google Scholar 

  41. D.S. Kim, B.K. Lee, J. Yeo, M.J. Choi, W. Yang, T.H. Kwon, Fabrication of PDMS micro/nano hybrid surface for increasing hydrophobicity. Microelectron. Eng. 86, 1375–1378 (2009)

    Google Scholar 

  42. Y. Yoon, D.W. Lee, J.H. Ahn, J. Sohn, J.B. Lee, One-step fabrication of optically transparent polydimethylsiloxane artificial lotus leaf film using under-exposed under-baked photoresist mold, in 25th IEEE International Conference on Micro Electro Mechanical Systems, pp. 301–304, Paris, France, 29 Jan–2 Feb 2012

    Google Scholar 

  43. Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7, 9533–9557 (2013)

    Google Scholar 

  44. Z.L. Wang, Nanogenerators for Self-powered Devices and Systems (Georgia Institute of Technology, Atlanta, 2011)

    Google Scholar 

  45. Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)

    Google Scholar 

  46. Z.L. Wang, W. Wu, Piezotronics and piezo-phototronics-fundamentals and applications. Nat. Sci. Rev. 1, 62–90 (2014)

    Google Scholar 

  47. Z.L. Wang, W. Wu, Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem. Int. Ed. 51, 11700–11721 (2012)

    Google Scholar 

  48. X. Wang, J. Song, J. Liu, Z.L. Wang, Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102–105 (2007)

    Article  Google Scholar 

  49. S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z.L. Wang, Self-powered nanowire devices. Nat. Nanotechnol. 5, 366–373 (2010)

    Article  Google Scholar 

  50. R. Yang, Y. Qin, C. Li, G. Zhu, Z.L. Wang, Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett. 9, 1201–1205 (2009)

    Article  Google Scholar 

  51. Y. Hu, Y. Zhang, C. Xu, G. Zhu, Z.L. Wang, High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. Nano Lett. 10, 5025–5031 (2010)

    Article  Google Scholar 

  52. Y. Qin, X. Wang, Z.L. Wang, Microfibre-nanowire hybrid structure for energy scavenging. Nature 451, 809–813 (2008)

    Article  Google Scholar 

  53. C. Chang, V.H. Tran, J. Wang, Y.K. Fuh, L. Lin, Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10, 726–731 (2010)

    Article  Google Scholar 

  54. C. Xu, Z.L. Wang, Compact hybrid cell based on a convoluted nanowire structure for harvesting solar and mechanical energy. Adv. Mater. 23, 873–877 (2011)

    Article  Google Scholar 

  55. F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1, 328–334 (2012)

    Article  Google Scholar 

  56. G. Zhu, C. Pan, W. Guo, C.Y. Chen, Y. Zhou, R. Yu, Z.L. Wang, Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 12, 4960–4965 (2012)

    Article  Google Scholar 

  57. F.R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, Z.L. Wang, Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12, 3109–3114 (2012)

    Article  Google Scholar 

  58. S. Wang, L. Lin, Z.L. Wang, Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 12, 6339–6346 (2012)

    Article  Google Scholar 

  59. A.F. Diaza, R.M. Felix-Navarro, A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J. Electrostat. 62, 277–290 (2004)

    Article  Google Scholar 

  60. P. Bai, G. Zhu, Y. Liu, J. Chen, Q. Jing, W. Yang, J. Ma, G. Zhang, Z.L. Wang, Cylindrical rotating triboelectric nanogenerator. ACS Nano 7, 6361–6366 (2013)

    Article  Google Scholar 

  61. L. Lin, S. Wang, Y. Xie, Q. Jing, S. Niu, Y. Hu, Z.L. Wang, Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 13, 2916–2923 (2013)

    Article  Google Scholar 

  62. Y. Yang, H. Zhang, Y. Liu, Z.H. Lin, S. Lee, Z. Lin, C.P. Wong, Z.L. Wang, Silicon-based hybrid energy cell for self-powered electrodegradation and personal electronics. ACS Nano 7, 2808–2813 (2013)

    Article  Google Scholar 

  63. Y. Yang, H. Zhang, J. Chen, S. Lee, T.C. Hou, Z.L. Wang, Simultaneously harvesting mechanical and chemicalenergies by a hybrid cell for self-powered biosensors and personal electronics. Energy Environ. Sci. 6, 1744–1749 (2013)

    Article  Google Scholar 

  64. S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu, Z.L. Wang, Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 13, 2226–2233 (2013)

    Article  Google Scholar 

  65. G. Zhu, J. Chen, T. Zhang, Q. Jing, Z.L. Wang, Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 5, 3426 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Sheng Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, XS. (2016). Introduction. In: Micro/Nano Integrated Fabrication Technology and Its Applications in Microenergy Harvesting. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48816-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48816-4_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48814-0

  • Online ISBN: 978-3-662-48816-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics