Skip to main content

Photoreactor Design Aspects and Modeling of Light

  • Chapter
  • First Online:
Heterogeneous Photocatalysis

Abstract

Geometry of the photoreactors depends mainly on the application as well as on the available irradiation source. Additionally, the following factors also need to be considered during the design of photoreactors: (1) type and particle size of the photocatalyst; (2) distribution of the photocatalyst (fixed or suspended); (3) type, content, and distribution of pollutants; (4) mass transfer; (5) fluid dynamics (laminar or turbulent flow); (6) temperature control; (7) reaction mechanism; and (8) reaction kinetics. This chapter deals with the general classification and description of photoreactors used for reaction carried out in the gas and liquid phase. Different types of photoreactors are described in relation to their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujishima A, Zhang X (2006) Titanium dioxide photocatalysis: present situation and future approaches. C R Chim 9:750–760

    Article  CAS  Google Scholar 

  2. Ireland JC, Klostermann P, Rice EW, Clark RM (1993) Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation. Appl Environ Microbiol 59:1668–1670

    CAS  Google Scholar 

  3. McCullagh C, Robertson JM, Bahnemann DW, Robertson PK (2007) The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: a review. Res Chem Intermed 33:359–375

    Article  CAS  Google Scholar 

  4. Cai R, Hashimoto K, Kubota Y, Fujishima A (1992) Increment of photocatalytic killing of cancer cells using TiO2 with the aid of superoxide dismutase. Chem Lett 21:427–430

    Google Scholar 

  5. Cai R, Kubota Y, Shuin T, Sakai H, Hashimoto K, Fujishima A (1992) Induction of cytotoxicity by photoexcited TiO2 particles. Cancer Res 52:2346–2348

    CAS  Google Scholar 

  6. Borgarello E, Kiwi J, Pelizzetti E, Visca M, Grätzel M (1981) Photochemical cleavage of water by photocatalysis. Nature 289:158–160

    Article  CAS  Google Scholar 

  7. Li C, Xi Z, Fang W, Xing M, Zhang J (2015) Enhanced photocatalytic hydrogen evolution activity of CuInS2 loaded TiO2 under solar light irradiation. J Solid State Chem 226:94–100

    Article  CAS  Google Scholar 

  8. Wang H, Chen W, Zhang J, Huang C, Mao L (2015) Nickel nanoparticles modified CdS–A potential photocatalyst for hydrogen production through water splitting under visible light irradiation. Int J Hydrog Energy 40:340–345

    Article  CAS  Google Scholar 

  9. Wang Z, Teramura K, Hosokawa S, Tanaka T (2015) Photocatalytic conversion of CO2 in water over Ag-modified La2 Ti2 O7. Appl Catal Environ 163:241–247

    Article  CAS  Google Scholar 

  10. Lee C-W, Kourounioti RA, Wu JC, Murchie E, Maroto-Valer M, Jensen OE, Huang C-W, Ruban A (2014) Photocatalytic conversion of CO2 to hydrocarbons by light-harvesting complex assisted Rh-doped TiO2 photocatalyst. J CO2 Utils 5:33–40

    Google Scholar 

  11. Chong R, Li J, Ma Y, Zhang B, Han H, Li C (2014) Selective conversion of aqueous glucose to value-added sugar aldose on TiO2-based photocatalysts. J Catal 314:101–108

    Article  CAS  Google Scholar 

  12. Gu Q, Long J, Fan L, Chen L, Zhao L, Lin H, Wang X (2013) Single-site Sn-grafted Ru/TiO2 photocatalysts for biomass reforming: synergistic effect of dual co-catalysts and molecular mechanism. J Catal 303:141–155

    Article  CAS  Google Scholar 

  13. Nair M, Luo Z, Heller A (1993) Rates of photocatalytic oxidation of crude oil on salt water on buoyant, cenosphereattached titanium dioxide. Ind Eng Chem Res 32:2318–2323

    Article  CAS  Google Scholar 

  14. Yoon TP, Ischay MA, Du J (2010) Visible light photocatalysis as a greener approach to photochemical synthesis. Nat Chem 2:527–532

    Article  CAS  Google Scholar 

  15. Tomašić V, Jović F, Gomzi Z (2008) Photocatalytic oxidation of toluene in the gas phase: modelling an annular photocatalytic reactor. Catal Today 137:350–356

    Article  CAS  Google Scholar 

  16. Imoberdorf GE, Cassano AE, Irazoqui HA, Alfano OM (2007) Optimal design and modeling of annular photocatalytic wall reactors. Catal Today 129:118–126

    Article  CAS  Google Scholar 

  17. Vincent G, Marquaire P-M, Zahraa O (2009) Photocatalytic degradation of gaseous 1-propanol using an annular reactor: kinetic modelling and pathways. J Hazard Mater 161:1173–1181

    Article  CAS  Google Scholar 

  18. Vincent G, Marquaire P-M, Zahraa O (2008) Abatement of volatile organic compounds using an annular photocatalytic reactor: study of gaseous acetone. J Photochem Photobiol A 197:177–189

    Article  CAS  Google Scholar 

  19. Imoberdorf G, Irazoqui H, Cassano A, Alfano O. Modelling of a multi-annular photoreactor for the degradation of perchloroethylene in gas phase

    Google Scholar 

  20. Salvadó-Estivill I, Brucato A, Li Puma G (2007) Two-dimensional modeling of a flat-plate photocatalytic reactor for oxidation of indoor air pollutants. Ind Eng Chem Res 46:7489–7496

    Article  CAS  Google Scholar 

  21. Demeestere K, De Visscher A, Dewulf J, Van Leeuwen M, Van Langenhove H (2004) A new kinetic model for titanium dioxide mediated heterogeneous photocatalytic degradation of trichloroethylene in gas-phase. Appl Catal Environ 54:261–274

    Article  CAS  Google Scholar 

  22. Mo J, Zhang Y, Xu Q, Zhu Y, Lamson JJ, Zhao R (2009) Determination and risk assessment of by-products resulting from photocatalytic oxidation of toluene. Appl Catal Environ 89:570–576

    Article  CAS  Google Scholar 

  23. Arabatzis I, Spyrellis N, Loizos Z, Falaras P (2005) Design and theoretical study of a packed bed photoreactor. J Mater Process Technol 161:224–228

    Article  CAS  Google Scholar 

  24. Ibhadon A, Arabatzis I, Falaras P, Tsoukleris D (2007) The design and photoreaction kinetic modeling of a gasphase titania foam packed bed reactor. Chem Eng J 133:317–323

    Article  CAS  Google Scholar 

  25. Fu X, Clark LA, Zeltner WA, Anderson MA (1996) Effects of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene. J Photochem Photobiol A 97:181–186

    Article  CAS  Google Scholar 

  26. Wang X, Tan X, Yu T (2014) Modeling of formaldehyde photocatalytic degradation in a honeycomb monolith reactor using computational fluid dynamics. Ind Eng Chem Res 53:18402–18410

    Article  CAS  Google Scholar 

  27. Taranto J, Frochot D, Pichat P (2009) Photocatalytic air purification: comparative efficacy and pressure drop of a TiO2-coated thin mesh and a honeycomb monolith at high air velocities using a 0.4 m 3 close-loop reactor. Sep Purif Technol 67:187–193

    Article  CAS  Google Scholar 

  28. Wei D, Vanderspurt T, Hay S, Schmidt W, Obee T, Wei D, H. VT, O HS, R SW, N OT (2005) Bifunctional layered photocatalyst/thermocatalyst for improving indoor air quality

    Google Scholar 

  29. Wei D, Obee TN, Hay SO, Vanderspurt TH, Schmidt WR, Sangiovanni JJ (2007) C. Corporation, oxidation impurities in air; applying ultraviolet radiation to oxidation catalyst; activation

    Google Scholar 

  30. Palma V, Sannino D, Vaiano V, Ciambelli P (2010) Fluidized-bed reactor for the intensification of gas-phase photocatalytic oxidative dehydrogenation of cyclohexane. Ind Eng Chem Res 49:10279–10286

    Article  CAS  Google Scholar 

  31. Hajaghazadeh M, Vaiano V, Sannino D, Kakooei H, Sotudeh-Gharebagh R, Ciambelli P (2014) Heterogeneous photocatalytic oxidation of methyl ethyl ketone under UV-A light in an LED-fluidized bed reactor. Catal Today 230:79–84

    Article  CAS  Google Scholar 

  32. Amama PB, Itoh K, Murabayashi M (2002) Gas-phase photocatalytic degradation of trichloroethylene on pretreated TiO2. Appl Catal Environ 37:321–330

    Article  CAS  Google Scholar 

  33. Debono O, Thévenet F, Gravejat P, Hequet V, Raillard C, Le Coq L, Locoge N (2013) Gas phase photocatalyticoxidation of decane at ppb levels: removal kinetics, reaction intermediates and carbon mass balance. J Photochem Photobiol A 258:17–29

    Article  CAS  Google Scholar 

  34. Boulamanti AK, Philippopoulos CJ (2008) Photocatalytic degradation of methyl tert-butyl ether in the gas-phase: a kinetic study. J Hazard Mater 160:83–87

    Article  CAS  Google Scholar 

  35. Boulamanti AK, Korologos CA, Philippopoulos CJ (2008) The rate of photocatalytic oxidation of aromatic volatile organic compounds in the gas-phase. Atmos Environ 42:7844–7850

    Article  CAS  Google Scholar 

  36. Boulamanti AK, Philippopoulos CJ (2009) Photocatalytic degradation of C5–C7 alkanes in the gas–phase. Atmos Environ 43:3168–3174

    Article  CAS  Google Scholar 

  37. Alonso-Tellez A, Masson R, Robert D, Keller N, Keller V (2012) Comparison of Hombikat UV100 and P25 TiO2 performance in gas-phase photocatalytic oxidation reactions. J Photochem Photobiol A 250:58–65

    Article  CAS  Google Scholar 

  38. Assadi AA, Palau J, Bouzaza A, Wolbert D (2013) Modeling of a continuous photocatalytic reactor for isovaleraldehyde oxidation: effect of different operating parameters and chemical degradation pathway. Chem Eng Res Des 91:1307–1316

    Article  CAS  Google Scholar 

  39. Korologos CA, Philippopoulos CJ, Poulopoulos SG (2011) The effect of water presence on the photocatalytic oxidation of benzene, toluene, ethylbenzene and m-xylene in the gas-phase. Atmos Environ 45:7089–7095

    Article  CAS  Google Scholar 

  40. Korologos CA, Nikolaki MD, Zerva CN, Philippopoulos CJ, Poulopoulos SG (2012) Photocatalytic oxidation of benzene, toluene, ethylbenzene and m-xylene in the gas-phase over TiO2-based catalysts. J Photochem Photobiol A 244:24–31

    Article  CAS  Google Scholar 

  41. Lee DM, Yun HJ, Yu S, Yun SJ, Lee SY, Kang SH, Yi J (2012) Design of an efficient photocatalytic reactor for the decomposition of gaseous organic contaminants in air. Chem Eng J 187:203–209

    Article  CAS  Google Scholar 

  42. Colón G, Maicu M, Hidalgo M, Navío J, Kubacka A, Fernández-García M (2010) Gas phase photocatalytic oxidation of toluene using highly active Pt doped TiO2. J Mol Catal A 320:14–18

    Article  CAS  Google Scholar 

  43. Grandcolas M, Cottineau T, Louvet A, Keller N, Keller V (2013) Solar light-activated photocatalytic degradation of gas phase diethylsulfide on WO3-modified TiO2 nanotubes. Appl Catal Environ 138:128–140

    Article  CAS  Google Scholar 

  44. Raillard C, Hequet V, Le Cloirec P, Legrand J (2004) Kinetic study of ketones photocatalytic oxidation in gas phase using TiO2-containing paper: effect of water vapor. J Photochem Photobiol A 163:425–431

    Article  CAS  Google Scholar 

  45. García-López E, Marcì G, Megna B, Parisi F, Armelao L, Trovarelli A, Boaro M, Palmisano L (2015) SrTiO3- based perovskites: preparation, characterization and photocatalytic activity in gas–solid regime under simulated solar irradiation. J Catal 321:13–22

    Google Scholar 

  46. Kozlova EA, Kozhevnikova NS, Cherepanova SV, Lyubina TP, Gerasimov EY, Kaichev VV, Vorontsov AV, Tsybulya SV, Rempel AA, Parmon VN (2012) Photocatalytic oxidation of ethanol vapors under visible light on CdS–TiO2 nanocatalyst. J Photochem Photobiol A 250:103–109

    Article  CAS  Google Scholar 

  47. Zuo G-M, Cheng Z-X, Chen H, Li G-W, Miao T (2006) Study on photocatalytic degradation of several volatile organic compounds. J Hazard Mater 128:158–163

    Article  CAS  Google Scholar 

  48. Ourrad H, Thevenet F, Gaudion V, Riffault V (2015) Limonene photocatalytic oxidation at ppb levels: assessment of gas phase reaction intermediates and secondary organic aerosol heterogeneous formation. Appl Catal Environ 168:183–194

    Article  CAS  Google Scholar 

  49. Zhong J, Wang J, Tao L, Gong M, Zhimin L, Chen Y (2007) Photocatalytic degradation of gaseous benzene over TiO2/Sr2 CeO4: kinetic model and degradation mechanisms. J Hazard Mater 139:323–331

    Article  CAS  Google Scholar 

  50. Vlachos P, Stathatos E, Lyberatos G, Lianos P (2008) Gas-phase photocatalytic degradation of 2, 4, 6- trichloroanisole in the presence of a nanocrystalline Titania film. Applications to the treatment of cork stoppers. Catal Commun 9:1987–1990

    Article  CAS  Google Scholar 

  51. Amama PB, Itoh K, Murabayashi M (2004) Photocatalytic degradation of trichloroethylene in dry and humid atmospheres: role of gas-phase reactions. J Mol Catal A 217:109–115

    Article  CAS  Google Scholar 

  52. Inaba R, Fukahori T, Hamamoto M, Ohno T (2006) Synthesis of nanosized TiO2 particles in reverse micellesystems and their photocatalytic activity for degradation of toluene in gas phase. J Mol Catal A 260:247–254

    Article  CAS  Google Scholar 

  53. Kim SB, Hwang HT, Hong SC (2002) Photocatalytic degradation of volatile organic compounds at the gas–solid interface of a TiO2 photocatalyst. Chemosphere 48:437–444

    Article  CAS  Google Scholar 

  54. Lin T, Pi Z, Gong MC, Zhong JB, Wang JL, Chen YQ (2007) Gas-phase photocatalytic oxidation of benzene over titanium dioxide loaded on Bi12 TiO20. Chin Chem Lett 18:241–243

    Article  CAS  Google Scholar 

  55. Wang W, Ku Y, Ma C, Jeng F (2005) Modeling of the photocatalytic decomposition of gaseous benzene in a TiO2 coated optical fiber photoreactor. J Appl Electrochem 35:709–714

    Article  CAS  Google Scholar 

  56. Choi W, Ko JY, Park H, Chung JS (2001) Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone. Appl Catal Environ 31:209–220

    Article  CAS  Google Scholar 

  57. Long B, Huang J, Wang X (2012) Photocatalytic degradation of benzene in gas phase by nanostructured BiPO4 catalysts. Prog Nat Sci 22:644–653

    Article  Google Scholar 

  58. Wu C, Yue Y, Deng X, Hua W, Gao Z (2004) Investigation on the synergetic effect between anatase and rutile nanoparticles in gas-phase photocatalytic oxidations. Catal Today 93:863–869

    Article  CAS  Google Scholar 

  59. Jiang Y, Amal R (2013) Selective synthesis of TiO2-based nanoparticles with highly active surface sites for gasphase photocatalytic oxidation. Appl Catal Environ 138:260–267

    Article  CAS  Google Scholar 

  60. Chen Y, Cao X, Kuang J, Chen Z, Chen J, Lin B (2010) The gas-phase photocatalytic mineralization of benzene over visible-light-driven Bi2WO6@C microspheres. Catal Commun 12:247–250

    Google Scholar 

  61. Dashliborun AM, Sotudeh-Gharebagh R, Hajaghazadeh M, Kakooei H, Afshar S (2013) Modeling of the photocatalytic degradation of methyl ethyl ketone in a fluidized bed reactor of nano-TiO2/γ-Al2 O3 particles. Chem Eng J 226:59–67

    Article  CAS  Google Scholar 

  62. Geng Q, Wang Q, Zhang Y, Wang L, Wang H (2013) Photocatalytic degradation intrinsic kinetics of gaseous cyclohexane in a fluidized bed photocatalytic reactor. Res Chem Intermed 39:1711–1726

    Article  CAS  Google Scholar 

  63. Lim TH, Kim SD (2004) Photo-degradation characteristics of TCE (trichloroethylene) in an annulus fluidized bed photoreactor. Korean J Chem Eng 21:905–909

    Article  CAS  Google Scholar 

  64. Mohseni M, Taghipour F (2004) Experimental and CFD analysis of photocatalytic gas phase vinyl chloride (VC) oxidation. Chem Eng Sci 59:1601–1609

    Article  CAS  Google Scholar 

  65. Keshmiri M, Troczynski T, Mohseni M (2006) Oxidation of gas phase trichloroethylene and toluene using composite sol–gel TiO2 photocatalytic coatings. J Hazard Mater 128:130–137

    Article  CAS  Google Scholar 

  66. Ou M, Dong F, Zhang W, Wu Z (2014) Efficient visible light photocatalytic oxidation of NO in air with band-gap tailored (BiO)2 CO3–BiOI solid solutions. Chem Eng J 255:650–658

    Google Scholar 

  67. Polat M, Soylu AM, Erdogan DA, Erguven H, Vovk EI, Ozensoy E (2015) Influence of the sol–gel preparation method on the photocatalytic NO oxidation performance of TiO2/Al2O3 binary oxides. Catal Today 241:25–32

    Google Scholar 

  68. Sugrañez R, Álvarez J, Cruz-Yusta M, Mármol I, Morales J, Vila J, Sánchez L (2013) Enhanced photocatalytic degradation of NOx gases by regulating the microstructure of mortar cement modified with titanium dioxide. Build Environ 69:55–63

    Article  Google Scholar 

  69. Menéndez-Flores VM, Bahnemann DW, Ohno T (2011) Visible light photocatalytic activities of S-doped TiO2-Fe3+ in aqueous and gas phase. Appl Catal Environ 103:99–108

    Google Scholar 

  70. Soylu AM, Polat M, Erdogan DA, Say Z, Yıldırım C, Birer Ö, Ozensoy E (2014) TiO2–Al2O3 binary mixed oxide surfaces for photocatalytic NOx abatement. Appl Surf Sci 318:142–149

    Article  CAS  Google Scholar 

  71. Dong G, Ho W, Zhang L (2015) Photocatalytic NO removal on BiOI surface: the change from nonselective oxidation to selective oxidation. Appl Catal Environ 168:490–496

    Article  CAS  Google Scholar 

  72. Wang H, Wu Z, Liu Y, Wang Y (2009) Influences of various Pt dopants over surface platinized TiO2 on the photocatalytic oxidation of nitric oxide. Chemosphere 74:773–778

    Article  CAS  Google Scholar 

  73. Portela R, Suárez S, Rasmussen S, Arconada N, Castro Y, Durán A, Ávila P, Coronado J, Sánchez B (2010) Photocatalytic-based strategies for H2S elimination. Catal Today 151:64–70

    Article  CAS  Google Scholar 

  74. Sheng Z, Wu Z, Liu Y, Wang H (2008) Gas-phase photocatalytic oxidation of NO over palladium modified TiO2 catalysts. Catal Commun 9:1941–1944

    Article  CAS  Google Scholar 

  75. Liu H, Yu X, Yang H (2014) The integrated photocatalytic removal of SO2 and NO using Cu doped titaniumdioxide supported by multi-walled carbon nanotubes. Chem Eng J 243:465–472

    Article  CAS  Google Scholar 

  76. Signoretto M, Ghedini E, Trevisan V, Bianchi C, Ongaro M, Cruciani G (2010) TiO2–MCM-41 for the photocatalytic abatement of NOx in gas phase. Appl Catal Environ 95:130–136

    Article  CAS  Google Scholar 

  77. Ou M, Zhong Q, Zhang S, Yu L (2015) Ultrasound assisted synthesis of heterogeneous gC3 N4/BiVO4 composites and their visible-light-induced photocatalytic oxidation of NO in gas phase. J Alloys Compd 626:401–409

    Article  CAS  Google Scholar 

  78. Wang Z, Ci X, Dai H, Yin L, Shi H (2012) One-step synthesis of highly active Ti-containing Cr-modified MCM-48 mesoporous material and the photocatalytic performance for decomposition of H2S under visible light. Appl Surf Sci 258:8258–8263

    Article  CAS  Google Scholar 

  79. Lafjah M, Mayoufi A, Schaal E, Djafri F, Bengueddach A, Keller N, Keller V (2014) TiO2 nanorods for gas phase photocatalytic applications. Catal Today 235:193–200

    Article  CAS  Google Scholar 

  80. Alonso-Tellez A, Robert D, Keller N, Keller V (2012) A parametric study of the UV-A photocatalytic oxidation of H2S over TiO2. Appl Catal Environ 115:209–218

    Article  CAS  Google Scholar 

  81. Ao C, Lee S, Mak C, Chan L (2003) Photodegradation of volatile organic compounds (VOCs) and NO for indoor air purification using TiO2: promotion versus inhibition effect of NO. Appl Catal Environ 42:119–129

    Article  CAS  Google Scholar 

  82. Chen M, Liu Y (2010) NOx removal from vehicle emissions by functionality surface of asphalt road. J Hazard Mater 174:375–379

    Article  CAS  Google Scholar 

  83. Yu Q, Brouwers H (2009) Indoor air purification using heterogeneous photocatalytic oxidation. Part I: experimental study. Appl Catal B 92:454–461

    Article  CAS  Google Scholar 

  84. Nguyen NH, Bai H (2014) Photocatalytic removal of NO and NO2 using titania nanotubes synthesized by hydrothermal method. J Environ Sci 26:1180–1187

    Article  CAS  Google Scholar 

  85. Hüsken G, Hunger M, Brouwers H (2009) Experimental study of photocatalytic concrete products for air purification. Build Environ 44:2463–2474

    Article  Google Scholar 

  86. Toma F-L, Bertrand G, Chwa SO, Meunier C, Klein D, Coddet C (2006) Comparative study on the photocatalytic decomposition of nitrogen oxides using TiO2 coatings prepared by conventional plasma spraying and suspension plasma spraying. Surf Coat Technol 200:5855–5862

    Article  CAS  Google Scholar 

  87. Krishnan P, Zhang M-H, Cheng Y, Riang DT, Liya EY (2013) Photocatalytic degradation of SO2 using TiO2- containing silicate as a building coating material. Construct Build Mater 43:197–202

    Article  Google Scholar 

  88. Martinez T, Bertron A, Ringot E, Escadeillas G (2011) Degradation of NO using photocatalytic coatings applied to different substrates. Build Environ 46:1808–1816

    Article  Google Scholar 

  89. Lin C-Y, Li C-S (2003) Inactivation of microorganisms on the photocatalytic surfaces in air. Aerosol Sci Technol 37:939–946

    Article  CAS  Google Scholar 

  90. Chotigawin R, Sribenjalux P, Supothina S, Johns J, Charerntanyarak L, Chuaybamroong P (2010) Airborne microorganism disinfection by photocatalytic HEPA filter. Environment Asia 3:1–7

    Google Scholar 

  91. Vohra A, Goswami D, Deshpande D, Block S (2006) Enhanced photocatalytic disinfection of indoor air. Appl Catal Environ 64:57–65

    Article  CAS  Google Scholar 

  92. Keller V, Keller N, Ledoux MJ, Lett M-C (2005) Biological agent inactivation in a flowing air stream by photocatalysis. Chem Commun 23:2918–2920

    Article  CAS  Google Scholar 

  93. Guo M-Z, Ling T-C, Poon C-S (2012) TiO2-based self-compacting glass mortar: comparison of photocatalytic nitrogen oxide removal and bacteria inactivation. Build Environ 53:1–6

    Article  Google Scholar 

  94. Modesto O, Hammer P, Nogueira RFP (2013) Gas phase photocatalytic bacteria inactivation using metal modified TiO2 catalysts. J Photochem Photobiol A 253:38–44

    Article  CAS  Google Scholar 

  95. Slamet HWN, Purnama E, Riyani K, Gunlazuardi J (2009) Effect of copper species in a photocatalytic synthesis of methanol from carbon dioxide over copper-doped titania catalysts. World Appl Sci J 6:112–122

    CAS  Google Scholar 

  96. Wang Q, Wu W, Chen J, Chu G, Ma K, Zou H (2012) Novel synthesis of ZnPc/TiO2 composite particles and carbon dioxide photo-catalytic reduction efficiency study under simulated solar radiation conditions. Colloids Surf A Physicochem Eng Asp 409:118–125

    Article  CAS  Google Scholar 

  97. Lee W-H, Liao C-H, Tsai M-F, Huang C-W, Wu JC (2013) A novel twin reactor for CO2 photoreduction to mimic artificial photosynthesis. Appl Catal Environ 132:445–451

    Article  CAS  Google Scholar 

  98. Liu L, Gao F, Zhao H, Li Y (2013) Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Appl Catal Environ 134:349–358

    Article  CAS  Google Scholar 

  99. Wang Y, Li B, Zhang C, Cui L, Kang S, Li X, Zhou L (2013) Ordered mesoporous CeO2-TiO2 composites: highly efficient photocatalysts for the reduction of CO2 with H2O under simulated solar irradiation. Appl Catal Environ 130:277–284

    Article  CAS  Google Scholar 

  100. Zhao C, Krall A, Zhao H, Zhang Q, Li Y (2012) Ultrasonic spray pyrolysis synthesis of Ag/TiO2 nanocomposite photocatalysts for simultaneous H2 production and CO2 reduction. Int J Hydrog Energy 37:9967–9976

    Google Scholar 

  101. Kočí K, Matějka V, Kovář P, Lacný Z, Obalová L (2011) Comparison of the pure TiO2 and kaolinite/TiO2 composite as catalyst for CO2 photocatalytic reduction. Catal Today 161:105–109

    Article  CAS  Google Scholar 

  102. Kočí K, Reli M, Kozák O, Lacný Z, Plachá D, Praus P, Obalová L (2011) Influence of reactor geometry on the yield of CO2 photocatalytic reduction. Catal Today 176:212–214

    Article  CAS  Google Scholar 

  103. Wu JC, Wu T-H, Chu T, Huang H, Tsai D (2008) Application of optical-fiber photoreactor for CO2 photocatalytic reduction. Top Catal 47:131–136

    Article  CAS  Google Scholar 

  104. Wu J, Lin H-M (2005) Photo reduction of CO2 to methanol via TiO2 photocatalyst. Int J Photoenergy 7:115–119

    Article  CAS  Google Scholar 

  105. Zhao Z-H, Fan J-M, Wang Z-Z (2007) Photo-catalytic CO2 reduction using sol–gel derived titania-supported zinc-phthalocyanine. J Clean Prod 15:1894–1897

    Article  Google Scholar 

  106. Guan G, Kida T, Harada T, Isayama M, Yoshida A (2003) Photoreduction of carbon dioxide with water over K2Ti6O13 photocatalyst combined with Cu/ZnO catalyst under concentrated sunlight. Appl Catal Gen 249:11–18

    Article  CAS  Google Scholar 

  107. Ola O, Maroto-Valer M, Liu D, Mackintosh S, Lee C-W, Wu JC (2012) Performance comparison of CO2 conversion in slurry and monolith photoreactors using Pd and Rh-TiO2 catalyst under ultraviolet irradiation. Appl Catal Environ 126:172–179

    Article  CAS  Google Scholar 

  108. Liou P-Y, Chen S-C, Wu JC, Liu D, Mackintosh S, Maroto-Valer M, Linforth R (2011) Photocatalytic CO2 reduction using an internally illuminated monolith photoreactor. Energy Environ Sci 4:1487–1494

    Article  CAS  Google Scholar 

  109. Shi D, Feng Y, Zhong S (2004) Photocatalytic conversion of CH4 and CO2 to oxygenated compounds over Cu/CdS–TiO2/SiO2 catalyst. Catal Today 98:505–509

    Google Scholar 

  110. Wang Y, Wang F, Chen Y, Zhang D, Li B, Kang S, Li X, Cui L (2014) Enhanced photocatalytic performance of ordered mesoporous Fe-doped CeO2 catalysts for the reduction of CO2 with H2O under simulated solar irradiation. Appl Catal Environ 147:602–609

    Article  CAS  Google Scholar 

  111. Tahir M, Amin NS (2013) Photocatalytic CO2 reduction and kinetic study over In/TiO2 nanoparticles supported microchannel monolith photoreactor. Appl Catal Gen 467:483–496

    Article  CAS  Google Scholar 

  112. Tahir M, Amin NS (2013) Photocatalytic CO2 reduction with H2O vapors using montmorillonite/TiO2 supported microchannel monolith photoreactor. Chem Eng J 230:314–327

    Article  CAS  Google Scholar 

  113. Nguyen T-V, Wu JC, Chiou C-H (2008) Photoreduction of CO2 over ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight. Catal Commun 9:2073–2076

    Article  CAS  Google Scholar 

  114. McCullagh C, Skillen N, Adams M, Robertson PK (2011) Photocatalytic reactors for environmental remediation: a review. J Chem Technol Biotechnol 86:1002–1017

    Article  CAS  Google Scholar 

  115. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    Article  CAS  Google Scholar 

  116. De Lasa H, Serrano B, Salaices M (2005) Photocatalytic reaction engineering. Springer, New york

    Book  Google Scholar 

  117. Ibhadon A, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3:189–218

    Article  CAS  Google Scholar 

  118. Wetchakun N, Chainet S, Phanichphant S, Wetchakun K (2015) Efficient photocatalytic degradation of methylene blue over BiVO4/TiO2 nanocomposites. Ceram Int 41:5999–6004

    Google Scholar 

  119. Zhang L, Zhang J, Zhang W, Liu J, Zhong H, Zhao Y (2015) Photocatalytic activity of attapulgite–BiOCl–TiO2 toward degradation of methyl orange under UV and visible light irradiation. Mater Res Bull 66:109–114

    Article  CAS  Google Scholar 

  120. Xu W, Fang J, Chen Y, Lu S, Zhou G, Zhu X, Fang Z (2015) Novel heterostructured Bi2S3/Bi2Sn2O7 with highlyvisible light photocatalytic activity for the removal of rhodamine B. Mater Chem Phys 154:30–37

    Article  CAS  Google Scholar 

  121. Kunduz S, Soylu GSP (2015) Highly active BiVO4 nanoparticles: the enhanced photocatalytic properties under natural sunlight for removal of phenol from wastewater. Sep Purif Technol 141:221–228

    Article  CAS  Google Scholar 

  122. Chen J, Zhang H, Liu P, Li Y, Liu X, Li G, Wong PK, An T, Zhao H (2015) Cross-linked ZnIn2S4/rGO composite photocatalyst for sunlight-driven photocatalytic degradation of 4-nitrophenol. Appl Catal Environ 168–169:266–273

    Google Scholar 

  123. Lee D-S, Park S-J (2015) Water-mediated modulation of TiO2 decorated with graphene for photocatalytic degradation of trichloroethylene. Curr Appl Phys 15:144–148

    Article  Google Scholar 

  124. Habibi MH, Rahmati MH (2015) The effect of operational parameters on the photocatalytic degradation of Congo red organic dye using ZnO–CdS core–shell nano-structure coated on glass by Doctor Blade method. Spectrochim Acta A Mol Biomol Spectrosc 137:160–164

    Article  CAS  Google Scholar 

  125. Yamazaki S, Yamate T, Adachi K (2013) Photocatalytic activity of aqueous WO3 sol for the degradation of Orange II and 4-chlorophenol. Appl Catal Gen 454:30–36

    Article  CAS  Google Scholar 

  126. Yan X, Wang X, Gu W, Wu M, Yan Y, Hu B, Che G, Han D, Yang J, Fan W, Shi W (2015) Single-crystalline AgIn(MoO4)2 nanosheets grafted Ag/AgBr composites with enhanced plasmonic photocatalytic activity for degradation of tetracycline under visible light. Appl Catal Environ 164:297–304

    Article  CAS  Google Scholar 

  127. Zhang Y, Han C, Nadagouda MN, Dionysiou DD (2015) The fabrication of innovative single crystal N, Fcodoped titanium dioxide nanowires with enhanced photocatalytic activity for degradation of atrazine. Appl Catal B 168–169:550–558

    Article  CAS  Google Scholar 

  128. Sun B, Qiao Z, Hai Fan SK, Ai S (2013) Facile synthesis of silver sulfide/bismuth sulfide nanocomposites for photocatalytic inactivation of Escherichia coli under solar light irradiation. Mater Lett 91:142–145

    Article  CAS  Google Scholar 

  129. Lydakis-Simantiris N, Riga D, Katsivela E, Mantzavinos D, Xekoukoulotakis NP (2010) Disinfection of spring water and secondary treated municipal wastewater by TiO2 photocatalysis. Desalination 250:351–355

    Article  CAS  Google Scholar 

  130. Zacarías SM, Satuf ML, Vaccari MC, Alfano OM (2015) Photocatalytic inactivation of bacterial spores using TiO2 films with silver deposits. Chem Eng J 266:133–140

    Article  CAS  Google Scholar 

  131. Wang J, Li C, Zhuang H, Zhang J (2013) Photocatalytic degradation of methylene blue and inactivation of Gramnegative bacteria by TiO2 nanoparticles in aqueous suspension. Food Control 34:372–377

    Article  CAS  Google Scholar 

  132. Vijay M, Ramachandran K, Ananthapadmanabhan PV, Nalini B, Pillai BC, Bondioli F, Manivannan A, Narendhirakannan RT (2013) Photocatalytic inactivation of Gram-positive and Gram-negative bacteria by reactive plasma processed nanocrystalline TiO2 powder. Curr Appl Phys 13:510–516

    Article  Google Scholar 

  133. Wang J, Zhuang H, Hinton A Jr, Bowker B, Zhang J (2014) Photocatalytic disinfection of spoilage bacteria Pseudomonas fluorescens and Macrococcus caseolyticus by nano-TiO2. LWT – Food Sci Technol 59:1009–1017

    Article  CAS  Google Scholar 

  134. Long M, Wang J, Zhuang H, Zhang Y, Wu H, Zhang J (2014) Performance and mechanism of standard nano- TiO2 (P-25) in photocatalytic disinfection of foodborne microorganisms – Salmonella typhimurium and Listeria monocytogenes. Food Control 39:68–74

    Article  CAS  Google Scholar 

  135. Berberidou C, Paspaltsis I, Pavlidou E, Sklaviadis T, Poulios I (2012) Heterogenous photocatalytic inactivation of B. stearothermophilus endospores in aqueous suspensions under artificial and solar irradiation. Appl Catal Environ 125:375–382

    Article  CAS  Google Scholar 

  136. Schrank SG, José HJ, Moreira RFPM (2002) Simultaneous photocatalytic Cr(VI) reduction and dye oxidation in a TiO2 slurry reactor. J Photochem Photobiol A 147:71–76

    Article  CAS  Google Scholar 

  137. Umar M, Aziz HA (2013) Organic pollutants - monitoring, risk and treatment. InTech, Rijeka

    Google Scholar 

  138. Wang T, Wang J, Jin Y (2007) Slurry reactors for gas-to-liquid processes: a review. Ind Eng Chem Res 46:5824–5847

    Article  CAS  Google Scholar 

  139. Sivaiah M, Majumder SK (2013) Hydrodynamics and mixing characteristics in an ejector-induced downflow slurry bubble column (EIDSBC). Chem Eng J 225:720–733

    Article  CAS  Google Scholar 

  140. Nishio J, Tokumura M, Znad HT, Kawase Y (2006) Photocatalytic decolorization of azo-dye with zinc oxide powder in an external UV light irradiation slurry photoreactor. J Hazard Mater 138:106–115

    Article  CAS  Google Scholar 

  141. McCullagh C, Robertson PKJ, Adams M, Pollard PM, Mohammed A (2010) Development of a slurry continuous flow reactor for photocatalytic treatment of industrial waste water. J Photochem Photobiol A 211:42–46

    Article  CAS  Google Scholar 

  142. Subramanian M, Kannan A (2010) Photocatalytic degradation of phenol in a rotating annular reactor. Chem Eng Sci 65:2727–2740

    Article  CAS  Google Scholar 

  143. Inoue T, Fujishima A, Konishi S, Honda K (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637–638

    Article  CAS  Google Scholar 

  144. Tahir M, Amin NS (2013) Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels. Energy Convers Manag 76:194–214

    Article  CAS  Google Scholar 

  145. Rossetti I, Villa A, Pirola C, Prati L, Ramis G (2014) A novel high-pressure photoreactor for CO2 photoconversion to fuels. RSC Adv 4:28883–28885

    Article  CAS  Google Scholar 

  146. Priya R, Kanmani S (2009) Batch slurry photocatalytic reactors for the generation of hydrogen from sulfide and sulfite waste streams under solar irradiation. Solar Energy 83:1802–1805

    Article  CAS  Google Scholar 

  147. Matthews RW (1991) Photooxidative degradation of coloured organics in water using supported catalysts. TiO2 on sand. Water Res 25:1169–1176

    Article  CAS  Google Scholar 

  148. Dhananjeyan MR, Kiwi J, Thampi KR (2000) Photocatalytic performance of TiO2 and Fe2O3 immobilized on derivatized polymer films for mineralisation of pollutants. Chem Commun 15:1443–1444

    Google Scholar 

  149. Wang X, Shi F, Huang W, Fan C (2012) Synthesis of high quality TiO2 membranes on alumina supports and their photocatalytic activity. Thin Solid Films 520:2488–2492

    Article  CAS  Google Scholar 

  150. Sakthivel S, Shankar MV, Palanichamy M, Arabindoo B, Murugesan V (2002) Photocatalytic decomposition of leather dye: comparative study of TiO2 supported on alumina and glass beads. J Photochem Photobiol A 148:153–159

    Article  CAS  Google Scholar 

  151. Khatamian M, Hashemian S, Yavari A, Saket M (2012) Preparation of metal ion (Fe3+ and Ni2+) doped TiO2 nanoparticles supported on ZSM-5 zeolite and investigation of its photocatalytic activity. Mate Sci Eng 177:1623–1627

    Article  CAS  Google Scholar 

  152. Li Y, Zhou X, Chen W, Li L, Zen M, Qin S, Sun S (2012) Photodecolorization of Rhodamine B on tungstendoped TiO2/activated carbon under visible-light irradiation. J Hazard Mater 227–228:25–33

    Google Scholar 

  153. Zhang Y, Crittenden JC, Hand DW, Perram DL (1994) Fixed-bed photocatalysts for solar decontamination of water. Environ Sci Technol 35:435–442

    Article  Google Scholar 

  154. Li D, Zhua Q, Hana C, Yanga Y, Jiangb W, Zhang Z (2015) Photocatalytic degradation of recalcitrant organic pollutants in water using a novel cylindrical multi-column photoreactor packed with TiO2-coated silica gel beads. J Hazard Mater 285:398–408

    Article  CAS  Google Scholar 

  155. Ahmed MH, Keyes TE, Byrne JA, Blackledge CW, Hamilton JW (2011) Adsorption and photocatalytic degradation of human serum albumin on TiO2 and Ag–TiO2 films. J Photochem Photobiol A 222:123–131

    Article  CAS  Google Scholar 

  156. Pan JH, Lei Z, Lee WI, Xiong Z, Wang Q, Zhao XS (2011) Mesoporous TiO2 photocatalytic films on stainless steel for water decontamination. Catal Sci Technol 2:147–155

    Article  Google Scholar 

  157. Wang B, Karthikeyan R, Lu X-Y, Xuan J, Leung MK (2013) High photocatalytic activity of immobilized TiO2 nanorods on carbonized cotton fibers. J Hazard Mater 263:659–669

    Article  CAS  Google Scholar 

  158. Li D, Zheng H, Wang Q, Wang X, Jiang W, Zhang Z, Yang Y (2014) A novel double-cylindrical-shell photoreactor immobilized with monolayer TiO2-coated silica gel beads for photocatalytic degradation of Rhodamine B and methyl orange in aqueous solution. Sep Purif Technol 123:130–138

    Article  CAS  Google Scholar 

  159. Behnajady MA, Modirshahla N, Daneshvar N, Rabbani M (2007) Photocatalytic degradation of an azo dye in a tubular continuous-flow photoreactor with immobilized TiO2 on glass plates. Chem Eng J 127:167–176

    Article  CAS  Google Scholar 

  160. Faure M, Gerardin F, Andréa J-C, Ponsa M-N, Zahraa O (2011) Study of photocatalytic damages induced on E. coli by different photocatalytic supports (various types and TiO2 configurations). J Photochem Photobiol A 222:323–329

    Article  CAS  Google Scholar 

  161. Pablos C, Van Grieken R, Marugán J, Moreno B (2011) Photocatalytic inactivation of bacteria in a fixed-bedreactor: mechanistic insights by epifluorescence microscopy. Catal Today 161:133–139

    Article  CAS  Google Scholar 

  162. Van Grieken R, Marugan J, Sordo C, Pablos C (2009) Comparison of the photocatalytic disinfection of E. coli suspensions in slurry, wall and fixed-bed reactors. Catal Today 144:48–54

    Article  CAS  Google Scholar 

  163. Hsu M-H, Chang C-J (2014) S-doped ZnO nanorods on stainless-steel wire mesh as immobilized hierarchical photocatalysts for photocatalytic H2 production. Int J Hydrog Energy 39:16524–16533

    Article  CAS  Google Scholar 

  164. Augugliaro V, Loddo V, Pagliaro M, Palmisano G, Palmisano L (2010) Clean by light irradiation. RSC Publishing, Cambridge

    Google Scholar 

  165. Hao X-g, Li H-h, Zhang Z-l, Fan C-m, Liu S-b, Sun Y-p (2009) Modeling and experimentation of a novel labyrinth bubble photoreactor for degradation of organic pollutant. Chem Eng Res Des 87:1604–1611

    Article  CAS  Google Scholar 

  166. Cernigoj U, Stangar UL, Trebse P (2007) Evaluation of a novel Carberry type photoreactor for the degradation of organic pollutants in water. J Photochem Photobiol A 188:169–176

    Article  CAS  Google Scholar 

  167. Lo C-C, Huang C-W, Liao C-H, Wu JCS (2010) Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting. Int J Hydrog Energy 35:1523–1529

    Article  CAS  Google Scholar 

  168. Oralli E, Dincer I, Naterer GF (2011) Solar photocatalytic reactor performance for hydrogen production from incident ultraviolet radiation. Int J Hydrog Energy 36:9446–9452

    Article  CAS  Google Scholar 

  169. Xiong Z, Zhao Y, Zhang J, Zheng C (2015) Efficient photocatalytic reduction of CO2 into liquid products over cerium doped titania nanoparticles synthesized by a sol–gel auto-ignited method. Fuel Process Technol 135:6–13

    Article  CAS  Google Scholar 

  170. Wang J, Yang C, Wang C, Han W, Zhu W (2014) Photolytic and photocatalytic degradation of micro pollutants in a tubular reactor and the reaction kinetic models. Sep Purif Technol 122:105–111

    Article  CAS  Google Scholar 

  171. Reilly K, Taghipour F, Wilkinson DP (2012) Photocatalytic hydrogen production in a UV-irradiated fluidized bed reactor. Energy Procedia 29:513–521

    Article  CAS  Google Scholar 

  172. Swarnalatha B, Anjaneyulu Y (2004) Studies on the heterogeneous photocatalytic oxidation of 2,6-dinitrophenol in aqueous TiO2 suspension. J Mol Catal A 223:161–165

    Article  CAS  Google Scholar 

  173. Han W, Zhang P, Zhu W, Yin J, Li L (2004) Photocatalysis of p-chlorobenzoic acid in aqueous solution under irradiation of 254 nm and 185 nm UV light. Water Res 38:4197–4203

    Article  CAS  Google Scholar 

  174. Chen Y, Lu A, Li Y, Yip HY, An T, Li G, Jin P, Wonga P-K (2011) Photocatalytic inactivation of Escherichia coli by natural sphalerite suspension: effect of spectrum, wavelength and intensity of visible light. Chemosphere 84:1276–1281

    Article  CAS  Google Scholar 

  175. Benabbou AK, Derriche Z, Felix C, Lejeune P, Guillard C (2007) Photocatalytic inactivation of Escherischia coli: effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation. Appl Catal Environ 76:257–263

    Article  CAS  Google Scholar 

  176. Hernández-Gordillo A, Tzompantzi F, Oros-Ruiz S, Torres-Martinez LM, Gómez R (2014) Enhanced blue-light photocatalytic H2 production using CdS nanofiber. Catal Commun 45:139–143

    Google Scholar 

  177. Gomathisankar P, Hachisuka K, Katsumata H, Suzuki T, Funasaka K, Kaneco S (2013) Enhanced photocatalytic hydrogen production from aqueous methanol solution using ZnO with simultaneous photodeposition of Cu. Int J Hydrog Energy 38:11840–11846

    Article  CAS  Google Scholar 

  178. Gálvez JB, Rodríguez SM (2003) Solar detoxification. UNESCO Publishing, Paris

    Google Scholar 

  179. Spasiano D, Marotta R, Malato S, Fernandez-Ibanez P, Di Somma I (2015) Solar photocatalysis: materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Appl Catal B 170–171:90–123

    Article  CAS  Google Scholar 

  180. Alfano OM, Bahnemann D, Cassano AE, Dillert R, Goslich R (2000) Photocatalysis in water environments using artificial and solar light. Catal Today 58:199–230

    Article  CAS  Google Scholar 

  181. Tanveer M, Guyer GT (2013) Solar assisted photo degradation of wastewater by compound parabolic collectors: review of design and operational parameters. Renew Sustain Energy Rev 24:534–543

    Article  CAS  Google Scholar 

  182. Malato S, Fernandez-Ibanez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59

    Article  CAS  Google Scholar 

  183. Keane DA, McGuigan KG, Ibáñez PF, Polo-López MI, Byrne JA, Dunlop PSM, O’Shea K, Dionysiou DD, Pillai SC (2014) Solar photocatalysis for water disinfection: materials and reactor design. Catal Sci Technol 4:1211–1226

    Article  CAS  Google Scholar 

  184. Zayani G, Bousselmi L, Mhenni F, Ghrabi A (2009) Solar photocatalytic degradation of commercial textile azo dyes: performance of pilot plant scale thin film fixed-bed reactor. Desalination 246:344–352

    Article  CAS  Google Scholar 

  185. Xu J, Ao Y, Fu D, Lin J, Lin Y, Shen X, Yuan C, Yin Z (2008) Photocatalytic activity on TiO2-coated side-glowing optical fiber reactor under solar light. J Photochem Photobiol A 199:165–169

    Article  CAS  Google Scholar 

  186. Vidal A, Dıaz AI, El Hraiki A, Romero M, Muguruza I, Senhaji F, González J (1999) Solar photocatalysis for detoxification and disinfection of contaminated water: pilot plant studies. Catal Today 54:283–290

    Article  CAS  Google Scholar 

  187. McLoughlin OA, Kehoe SC, McGuigan KG, Duffy EF, Al Touati F, Gernjak W, Alberola IO, Rodrıguez SM, Gill LW (2004) Solar disinfection of contaminated water: a comparison of three small-scale reactors. Sol Energy 77:657–664

    Article  CAS  Google Scholar 

  188. Alrousan DMA, Polo-López MI, Dunlop PSM, Fernández-Ibánez P, Byrne JA (2012) Solar photocatalytic disinfection of water with immobilised titanium dioxide in re-circulating flow CPC reactors. Appl Catal Environ 128:126–134

    Article  CAS  Google Scholar 

  189. Xing Z, Zong X, Pan J, Wang L (2013) On the engineering part of solar hydrogen production from water splitting: photoreactor design. Chem Eng Sci 104:125–146

    Article  CAS  Google Scholar 

  190. Jing D, Guo L, Zhao L, Zhang X, Liu H, Li M, Shen S, Liu G, Hu X, Zhang X, Zhang K, Ma L, Guo P (2010) Efficient solar hydrogen production by photocatalytic water splitting: from fundamental study to pilot demonstration. Int J Hydrog Energy 35:7087–7097

    Article  CAS  Google Scholar 

  191. Villa K, Domenech X, Malato S, Maldonado MI, Peral J (2013) Heterogeneous photocatalytic hydrogen generation in a solar pilot plant. Int J Hydrog Energy 38:12718–12724

    Article  CAS  Google Scholar 

  192. Malato S, Blanco J, Alarcon DC, Maldonado MI, Fernandez-Ibanez P, Gernjak W (2007) Photocatalytic decontamination and disinfection of water with solar collectors. Catal Today 122:137–149

    Article  CAS  Google Scholar 

  193. Xu C, Rangaiah GP, Zhao XS (2015) A computational study of the effect of lamp arrangements on the performance of ultraviolet water disinfection reactors. Chem Eng Sci 122:299–306

    Article  CAS  Google Scholar 

  194. Ray AK, Beenackers AACM (1998) Development of a new photocatalytic reactor for water purification. Catal Today 40:73–83

    Article  CAS  Google Scholar 

  195. Palmisano G, Loddo V, Augugliaro V, Bellardita M, Camera Roda G, Parrino F (2015) Validation of a twodimensional modeling of an externally irradiated slurry photoreactor. Chem Eng J 262:490–498

    Article  CAS  Google Scholar 

  196. Tokumura M, Znad HT, Kawase Y (2006) Modeling of an external light irradiation slurry photoreactor: UV light or sunlight-photoassisted Fenton discoloration of azo-dye Orange II with natural mineral tourmaline powder. Chem Eng Sci 61:6361–6371

    Article  CAS  Google Scholar 

  197. Palmisano G, Loddo V, Augugliaro V (2013) Two-dimensional modeling of an externally irradiated slurry photoreactor. Int J Chem React Eng 11

    Google Scholar 

  198. Cassano AE, Martin CA, Brandi RJ, Alfano OM (1995) Photoreactor analysis and design: fundamentals and applications. Ind Eng Chem Res 34:2155–2201

    Article  CAS  Google Scholar 

  199. Pozzo RL, Brandi RJ, Giombi JL, Baltanás MA, Cassano AE (2005) Design of fluidized bed photoreactors: optical properties of photocatalytic composites of titania CVD-coated onto quartz sand. Chem Eng Sci 60:2785–2794

    Article  CAS  Google Scholar 

  200. Irazoqui HA, Cerdá J, Cassano AE (1976) The radiation field for the point and line source approximations and the three-dimensional source models: applications to photoreactions. Chem Eng J 11:27–37

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Zaleska-Medynska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mazierski, P., Bajorowicz, B., Grabowska, E., Zaleska-Medynska, A. (2016). Photoreactor Design Aspects and Modeling of Light. In: Colmenares, J., Xu, YJ. (eds) Heterogeneous Photocatalysis. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48719-8_7

Download citation

Publish with us

Policies and ethics