Skip to main content

Water Splitting By Photocatalytic Reduction

  • Chapter
  • First Online:
Heterogeneous Photocatalysis

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Water splitting by photocatalytic reduction is considered to be one of the most promising solutions to solve both the worldwide energy shortage and environmental pollution problems. Metal sulfide semiconductor photocatalysts as an important kind of photocatalysts have gained extensive interest in the field of photocatalytic H2 evolution due to their superior photocatalytic activity under visible light irradiation. This chapter summarizes the integration and optimization of highly efficient metal sulfide-based semiconductors from a system engineering perspective. To achieve the optimum efficiency, several typical system integration strategies such as loading co-catalysts onto nanoscale metal sulfides, forming doped or nanosized solid solutions, developing core/shell and intercalated semiconductors, fabricating hybrid or multi-junction photocatalysts, and exploring new mechanisms beyond heterojunctions are outlined and discussed in detail. Further research should focus on the investigation of mechanism, the development of highly efficient co-catalysts and semiconductors, as well as the construction of multi-junction photocatalysts with high H2-evolution activity. In this chapter, we not only provide a summary of system integration strategies of metal sulfides for solar water splitting but also may provide some potential opportunities for designing other types of heterogeneous photocatalysts used in solar water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gratzel M (2005) Mesoscopic solar cells for electricity and hydrogen production from sunlight. Chem Lett 34:8–13

    Article  Google Scholar 

  2. Gratzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  CAS  Google Scholar 

  3. Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810

    Article  CAS  Google Scholar 

  4. Marszewski M, Cao S, Yu J, Jaroniec M (2015) Semiconductor-based photocatalytic CO2 conversion. Mater Horiz 2:261–278

    Article  CAS  Google Scholar 

  5. Li X, Wen J, Low J, Fang Y, Yu J (2014) Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci China Mater 57:70–100

    Article  Google Scholar 

  6. Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Ed 44:2636–2639

    Article  CAS  Google Scholar 

  7. Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86:2273–2282

    Article  CAS  Google Scholar 

  8. Barreto L, Makihira A, Riahi K (2003) The hydrogen economy in the 21st century: a sustainable development scenario. Int J Hydrog Energy 28:267–284

    Article  CAS  Google Scholar 

  9. Turner JA (2004) Sustainable hydrogen production. Science 305:972–974

    Article  CAS  Google Scholar 

  10. Schlapbach L, Zuttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353–358

    Article  CAS  Google Scholar 

  11. Turner JA (1999) A realizable renewable energy future. Science 285:687–689

    Article  CAS  Google Scholar 

  12. Navarro RM, Peña MA, Fierro JLG (2007) Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chem Rev 107:3952–3991

    Article  CAS  Google Scholar 

  13. Nielsen M, Alberico E, Baumann W, Drexler HJ, Junge H, Gladiali S, Beller M (2013) Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature 495:85–89

    Article  CAS  Google Scholar 

  14. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 103:15729–15735

    Article  CAS  Google Scholar 

  15. Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321:1072–1075

    Article  CAS  Google Scholar 

  16. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  17. Grätzel M (1981) Artificial photosynthesis: water cleavage into hydrogen and oxygen by visible light. Acc Chem Res 14:376–384

    Article  Google Scholar 

  18. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570

    Article  CAS  Google Scholar 

  19. Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–7535

    Article  CAS  Google Scholar 

  20. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  CAS  Google Scholar 

  21. Osterloh FE (2007) Inorganic materials as catalysts for photochemical splitting of water. Chem Mater 20:35–54

    Article  CAS  Google Scholar 

  22. Li X, Yu J, Low J, Fang Y, Xiao J, Chen X (2015) Engineering heterogeneous semiconductors for solar water splitting. J Mater Chem A 3:2485–2534

    Article  CAS  Google Scholar 

  23. Maeda K, Domen K (2007) New non-oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem C 111:7851–7861

    Article  CAS  Google Scholar 

  24. Esswein AJ, Nocera DG (2007) Hydrogen production by molecular photocatalysis. Chem Rev 107:4022–4047

    Article  CAS  Google Scholar 

  25. Han Z, Qiu F, Eisenberg R, Holland PL, Krauss TD (2012) Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 338:1321–1324

    Article  CAS  Google Scholar 

  26. Bard AJ, Fox MA (1995) Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc Chem Res 28:141–145

    Article  CAS  Google Scholar 

  27. Kato H, Asakura K, Kudo A (2003) Highly efficient water splitting into H-2 and O-2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc 125:3082–3089

    Article  CAS  Google Scholar 

  28. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11:401–425

    Article  CAS  Google Scholar 

  29. Chen XB, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750

    Article  CAS  Google Scholar 

  30. Xiang Q, Yu J, Wang W, Jaroniec M (2011) Nitrogen self-doped nanosized TiO2 sheets with exposed {001} facets for enhanced visible-light photocatalytic activity. Chem Commun 47:6906–6908

    Article  CAS  Google Scholar 

  31. Tsuji I, Kato H, Kobayashi H, Kudo A (2004) Photocatalytic H-2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)(x)Zn2(1−x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. J Am Chem Soc 126:13406–13413

    Article  CAS  Google Scholar 

  32. Tsuji I, Kato H, Kudo A (2005) Visible-light-induced H-2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS-CuInS2-AgInS2 solid-solution photocatalyst. Angew Chem Int Ed 44:3565–3568

    Article  CAS  Google Scholar 

  33. Zhang K, Guo L (2013) Metal sulphide semiconductors for photocatalytic hydrogen production. Catal Sci Technol 3:1672–1690

    Article  CAS  Google Scholar 

  34. Ishikawa A, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm). J Am Chem Soc 124:13547–13553

    Article  CAS  Google Scholar 

  35. Hitoki G, Ishikawa A, Takata T, Kondo JN, Hara M, Domen K (2002) Ta3N5 as a novel visible light-driven photocatalyst (λ < 600 nm). Chem Lett 31:736–737

    Article  Google Scholar 

  36. Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation ([small lambda] [less-than-or-equal] 500 nm). Chem Commun 38:1698–1699

    Article  CAS  Google Scholar 

  37. Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K (2005) GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J Am Chem Soc 127:8286–8287

    Article  CAS  Google Scholar 

  38. Maeda K, Teramura K, Lu DL, Takata T, Saito N, Inoue Y, Domen K (2006) Photocatalyst releasing hydrogen from water – enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. Nature 440:295–295

    Article  CAS  Google Scholar 

  39. Wang Y, Wang X, Antonietti M (2012) Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew Chem Int Ed 51:68–89

    Article  CAS  Google Scholar 

  40. Sun J, Zhang J, Zhang M, Antonietti M, Fu X, Wang X (2012) Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nat Commun 3:1139

    Article  CAS  Google Scholar 

  41. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    Article  CAS  Google Scholar 

  42. Cao S, Low J, Yu J, Jaroniec M (2015) Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 27:2150–2176

    Article  CAS  Google Scholar 

  43. Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee S-T, Zhong J, Kang Z (2015) Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347:970–974

    Article  CAS  Google Scholar 

  44. Zhou X, Li X, Gao Q, Yuan J, Wen J, Fang Y, Liu W, Zhang S, Liu Y (2015) Metal-free carbon nanotube-SiC nanowire heterostructures with enhanced photocatalytic H2 evolution under visible light irradiation. Catal Sci Technol 5:2798–2806

    Article  CAS  Google Scholar 

  45. Zhou X, Liu Y, Li X, Gao Q, Liu X, Fang Y (2014) Topological morphology conversion towards SnO2/SiC hollow sphere nanochains with efficient photocatalytic hydrogen evolution. Chem Commun 50:1070–1073

    Article  CAS  Google Scholar 

  46. Hao J-Y, Wang Y-Y, Tong X-L, Jin G-Q, Guo X-Y (2012) Photocatalytic hydrogen production over modified SiC nanowires under visible light irradiation. Int J Hydrog Energy 37:15038–15044

    Article  CAS  Google Scholar 

  47. Hao JY, Wang YY, Tong XL, Jin GQ, Guo XY (2013) SiC nanomaterials with different morphologies for photocatalytic hydrogen production under visible light irradiation. Catal Today 212:220–224

    Article  CAS  Google Scholar 

  48. Wang Y, Guo X, Dong L, Jin G, Wang Y, Guo X-Y (2013) Enhanced photocatalytic performance of chemically bonded SiC-graphene composites for visible-light-driven overall water splitting. Int J Hydrog Energy 38:12733–12738

    Article  CAS  Google Scholar 

  49. Zhou X, Gao Q, Li X, Liu Y, Zhang S, Fang Y, Li J (2015) Ultra-thin SiC layers covered graphene nanosheets as advanced photocatalysts for hydrogen evolution. J Mater Chem A 3:10999–11005

    Article  CAS  Google Scholar 

  50. Yan H, Yang J, Ma G, Wu G, Zong X, Lei Z, Shi J, Li C (2009) Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J Catal 266:165–168

    Article  CAS  Google Scholar 

  51. Sheng H, Yu L, Jian-Hua Y, Ying Y (2013) CdS-based semiconductor photocatalysts for hydrogen production from water splitting under solar light. Nanotechnol Sustain Energy (Am Chem Soc) 1140:219–241

    Article  CAS  Google Scholar 

  52. Bard AJ (1980) Photoelectrochemistry. Science 207:139–144

    Article  CAS  Google Scholar 

  53. Bard AJ (1982) Design of semiconductor photoelectrochemical systems for solar energy conversion. J Phys Chem 86:172–177

    Article  CAS  Google Scholar 

  54. Chen SY, Wang LW (2012) Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem Mater 24:3659–3666

    Article  CAS  Google Scholar 

  55. Xu Y, Schoonen MAA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 85:543–556

    Article  CAS  Google Scholar 

  56. Yang J, Wang D, Han H, Li C (2013) Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res 46:1900–1909

    Article  CAS  Google Scholar 

  57. Ran J, Zhang J, Yu J, Jaroniec M, Qiao SZ (2014) Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev 43:7787–7812

    Article  CAS  Google Scholar 

  58. Chen X, Li C, Gratzel M, Kostecki R, Mao SS (2012) Nanomaterials for renewable energy production and storage. Chem Soc Rev 41:7909–7937

    Article  CAS  Google Scholar 

  59. Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42:2294–2320

    Article  CAS  Google Scholar 

  60. Kalyanasundaram K, Borgarello E, Duonghong D, Grätzel M (1981) Cleavage of water by visible-light irradiation of colloidal CdS solutions; inhibition of photocorrosion by RuO2. Angew Chem Int Ed 20:987–988

    Article  Google Scholar 

  61. Amirav L, Alivisatos AP (2010) Photocatalytic hydrogen production with tunable nanorod heterostructures. J Phys Chem Lett 1:1051–1054

    Article  CAS  Google Scholar 

  62. Bao N, Shen L, Takata T, Domen K (2007) Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chem Mater 20:110–117

    Article  CAS  Google Scholar 

  63. Yu J, Yu Y, Cheng B (2012) Enhanced visible-light photocatalytic H-2-production performance of multi-armed CdS nanorods. RSC Adv 2:11829–11835

    Article  CAS  Google Scholar 

  64. Jin J, Yu J, Liu G, Wong PK (2013) Single crystal CdS nanowires with high visible-light photocatalytic H2-production performance. J Mater Chem A 1:10927–10934

    Article  CAS  Google Scholar 

  65. Xiang Q, Cheng B, Yu J (2013) Hierarchical porous CdS nanosheet-assembled flowers with enhanced visible-light photocatalytic H-2-production performance. Appl Catal B Environ 138:299–303

    Article  CAS  Google Scholar 

  66. Chai B, Peng T, Zeng P, Zhang X, Liu X (2011) Template-free hydrothermal synthesis of ZnIn2S4 floriated microsphere as an efficient photocatalyst for H2 production under visible-light irradiation. J Phys Chem C 115:6149–6155

    Article  CAS  Google Scholar 

  67. Shang L, Zhou C, Bian T, Yu H, Wu L-Z, Tung C-H, Zhang T (2013) Facile synthesis of hierarchical ZnIn2S4 submicrospheres composed of ultrathin mesoporous nanosheets as a highly efficient visible-light-driven photocatalyst for H-2 production. J Mater Chem A 1:4552–4558

    Article  CAS  Google Scholar 

  68. Yu X, An X, Shavel A, Ibanez M, Cabot A (2014) The effect of the Ga content on the photocatalytic hydrogen evolution of CuIn1-xGaxS2 nanocrystals. J Mater Chem A 2:12317–12322

    Article  CAS  Google Scholar 

  69. Yu X, Shavel A, An X, Luo Z, Ibáñez M, Cabot A (2014) Cu2ZnSnS4-Pt and Cu2ZnSnS4-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation. J Am Chem Soc 136:9236–9239

    Article  CAS  Google Scholar 

  70. Hu Z, Yu JC (2013) Pt3Co-loaded CdS and TiO2 for photocatalytic hydrogen evolution from water. J Mater Chem A 1:12221–12228

    Article  CAS  Google Scholar 

  71. Cao-Thang D, Minh-Hao P, Kleitz F, Trong-On D (2013) Design of water-soluble CdS-titanate-nickel nanocomposites for photocatalytic hydrogen production under sunlight. J Mater Chem A 1:13308–13313

    Article  CAS  Google Scholar 

  72. Cao S, Wang C-J, Lv X-J, Chen Y, Fu W-F (2015) A highly efficient photocatalytic H-2 evolution system using colloidal CdS nanorods and nickel nanoparticles in water under visible light irradiation. Appl Catal B Environ 162:381–391

    Article  CAS  Google Scholar 

  73. Chen S, Chen X, Jiang Q, Yuan J, Lin C, Shangguan W (2014) Promotion effect of nickel loaded on CdS for photocatalytic H-2 production in lactic acid solution. Appl Surf Sci 316:590–594

    Article  CAS  Google Scholar 

  74. Wang H, Chen W, Zhang J, Huang CP, Mao LQ (2015) Nickel nanoparticles modified CdS – a potential photocatalyst for hydrogen production through water splitting under visible light irradiation. Int J Hydrog Energy 40:340–345

    Article  CAS  Google Scholar 

  75. Li X, Wang H, Chu T, Li D, Mao L (2014) Synthesis and peferentially loading of nickel nanoparticle on CdS surface and its photocatalytic performance for hydrogen evolution under visible light. Mater Res Bull 57:254–259

    Article  CAS  Google Scholar 

  76. Simon T, Bouchonville N, Berr MJ, Vaneski A, Adrovic A, Volbers D, Wyrwich R, Doblinger M, Susha AS, Rogach AL et al (2014) Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat Mater 13:1013–1018

    Article  CAS  Google Scholar 

  77. Zhang W, Wang Y, Wang Z, Zhong Z, Xu R (2010) Highly efficient and noble metal-free NiS/CdS photocatalysts for H2 evolution from lactic acid sacrificial solution under visible light. Chem Commun 46:7631–7633

    Article  CAS  Google Scholar 

  78. Zhang J, Qiao SZ, Qi L, Yu J (2013) Fabrication of NiS modified CdS nanorod p-n junction photocatalysts with enhanced visible-light photocatalytic H-2-production activity. Phys Chem Chem Phys 15:12088–12094

    Article  CAS  Google Scholar 

  79. Ran J, Zhang J, Yu J, Qiao SZ (2014) Enhanced visible-light photocatalytic H2 production by ZnxCd1-xS modified with earth-abundant nickel-based cocatalysts. ChemSusChem 7:3426–3434

    Article  CAS  Google Scholar 

  80. Zhang J, Qi L, Ran J, Yu J, Qiao SZ (2014) Ternary NiS/ZnxCd1-xS/reduced graphene oxide nanocomposites for enhanced solar photocatalytic H2-production activity. Adv Energy Mater 4:1301925

    Google Scholar 

  81. Yuan Y-P, Cao S-W, Yin L-S, Xu L, Xue C (2013) NiS2 Co-catalyst decoration on CdLa2S4 nanocrystals for efficient photocatalytic hydrogen generation under visible light irradiation. Int J Hydrog Energy 38:7218–7223

    Article  CAS  Google Scholar 

  82. Cao S, Chen Y, Wang C-J, He P, Fu W-F (2014) Highly efficient photocatalytic hydrogen evolution by nickel phosphide nanoparticles from aqueous solution. Chem Commun 50:10427–10429

    Article  CAS  Google Scholar 

  83. Chen X, Chen W, Gao H, Yang Y, Shangguan W (2014) In situ photodeposition of NiOx on CdS for hydrogen production under visible light: enhanced activity by controlling solution environment. Appl Catal B Environ 152:68–72

    Article  CAS  Google Scholar 

  84. Yuan J, Wen J, Gao Q, Chen S, Li J, Li X, Fang Y (2015) Amorphous Co3O4 modified CdS nanorods with enhanced visible-light photocatalytic H-2-production activity. Dalton Trans 44:1680–1689

    Article  CAS  Google Scholar 

  85. Yan Z, Wu H, Han A, Yu X, Du P (2014) Noble metal-free cobalt oxide (CoOx) nanoparticles loaded on titanium dioxide/cadmium sulfide composite for enhanced photocatalytic hydrogen production from water. Int J Hydrog Energy 39:13353–13360

    Article  CAS  Google Scholar 

  86. Zhang LJ, Zheng R, Li S, Liu BK, Wang DJ, Wang LL, Xie TF (2014) Enhanced photocatalytic H2 generation on cadmium sulfide nanorods with cobalt hydroxide as cocatalyst and insights into their photogenerated charge transfer properties. ACS Appl Mater Interfaces 6:13406–13412

    Article  CAS  Google Scholar 

  87. Ran J, Yu J, Jaroniec M (2011) Ni(OH)2 modified CdS nanorods for highly efficient visible-light-driven photocatalytic H2 generation. Green Chem 13:2708–2713

    Article  CAS  Google Scholar 

  88. Yan Z, Yu X, Han A, Xu P, Du P (2014) Noble-metal-free Ni(OH)(2)-modified CdS/reduced graphene oxide nanocomposite with enhanced photocatalytic activity for hydrogen production under visible light irradiation. J Phys Chem C 118:22896–22903

    Article  CAS  Google Scholar 

  89. Cao S, Chen Y, Hou C-C, Lv X-J, Fu W-F (2015) Cobalt phosphide as a highly active non-precious metal cocatalyst for photocatalytic hydrogen production under visible light irradiation. J Mater Chem A 3:6096–6101

    Article  CAS  Google Scholar 

  90. Zong X, Yan H, Wu G, Ma G, Wen F, Wang L, Li C (2008) Enhancement of photocatalytic H-2 evolution on CdS by loading MOS2 as cocatalyst under visible light irradiation. J Am Chem Soc 130:7176–7176

    Article  CAS  Google Scholar 

  91. Wei L, Chen Y, Lin Y, Wu H, Yuan R, Li Z (2014) MoS2 as non-noble-metal co-catalyst for photocatalytic hydrogen evolution over hexagonal ZnIn2S4 under visible light irradiations. Appl Catal B Environ 144:521–527

    Article  CAS  Google Scholar 

  92. Jang JS, Ham DJ, Lakshminarasimhan N, Choi WY, Lee JS (2008) Role of platinum-like tungsten carbide as cocatalyst of CdS photocatalyst for hydrogen production under visible light irradiation. Appl Catal A Gen 346:149–154

    Article  CAS  Google Scholar 

  93. Zong X, Han J, Ma G, Yan H, Wu G, Li C (2011) Photocatalytic H-2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation. J Phys Chem C 115:12202–12208

    Article  CAS  Google Scholar 

  94. Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR (2011) Highly efficient visible-light-driven photocatalytic hydrogen production of Cds-cluster-decorated graphene nanosheets. J Am Chem Soc 133:10878–10884

    Article  CAS  Google Scholar 

  95. Li Q, Meng H, Yu J, Xiao W, Zheng Y, Wang J (2014) Enhanced photocatalytic hydrogen-production performance of graphene-ZnxCd1-xS composites by using an organic S source. Chem Eur J 20:1176–1185

    Article  CAS  Google Scholar 

  96. Tang X, Tay Q, Chen Z, Chen Y, Goh GKL, Xue J (2013) CuInZnS-decorated graphene nanosheets for highly efficient visible-light-driven photocatalytic hydrogen production. J Mater Chem A 1:6359–6365

    Article  CAS  Google Scholar 

  97. Li Q, Li X, Wageh S, Al-Ghamdi AA, Yu J (2015) CdS/graphene nanocomposite photocatalysts. Adv Energy Mater, n/a–n/a

    Google Scholar 

  98. Zhang J, Yu J, Zhang Y, Li Q, Gong JR (2011) Visible light photocatalytic H-2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett 11:4774–4779

    Article  CAS  Google Scholar 

  99. Zhang J, Xu Q, Qiao SZ, Yu J (2013) Enhanced visible-light hydrogen-production activity of copper-modified ZnxCd1-xS. ChemSusChem 6:2009–2015

    Article  CAS  Google Scholar 

  100. Yu J, Zhang J, Liu S (2010) Ion-exchange synthesis and enhanced visible-light photoactivity of CuS/ZnS nanocomposite hollow spheres. J Phys Chem C 114:13642–13649

    Article  CAS  Google Scholar 

  101. Li Y, Hu Y, Peng S, Lu G, Li S (2009) Synthesis of CdS nanorods by an ethylenediamine assisted hydrothermal method for photocatalytic hydrogen evolution. J Phys Chem C 113:9352–9358

    Article  CAS  Google Scholar 

  102. Berr MJ, Vaneski A, Mauser C, Fischbach S, Susha AS, Rogach AL, Jäckel F, Feldmann J (2012) Delayed photoelectron transfer in Pt-decorated CdS nanorods under hydrogen generation conditions. Small 8:291–297

    Article  CAS  Google Scholar 

  103. Berr MJ, Wagner P, Fischbach S, Vaneski A, Schneider J, Susha AS, Rogach AL, Jäckel F, Feldmann J (2012) Hole scavenger redox potentials determine quantum efficiency and stability of Pt-decorated CdS nanorods for photocatalytic hydrogen generation. Appl Phys Lett 100:223903

    Article  CAS  Google Scholar 

  104. Berr M, Vaneski A, Susha AS, Rodríguez-Fernández J, Döblinger M, Jäckel F, Rogach AL, Feldmann J (2010) Colloidal CdS nanorods decorated with subnanometer sized Pt clusters for photocatalytic hydrogen generation. Appl Phys Lett 97:093108

    Article  CAS  Google Scholar 

  105. Yu J, Yu Y, Zhou P, Xiao W, Cheng B (2014) Morphology-dependent photocatalytic H-2-production activity of CdS. Appl Catal B Environ 156:184–191

    Article  CAS  Google Scholar 

  106. Zhao Q, Ji M, Qian H, Dai B, Weng L, Gui J, Zhang J, Ouyang M, Zhu H (2014) Controlling structural symmetry of a hybrid nanostructure and its effect on efficient photocatalytic hydrogen evolution. Adv Mater 26:1387–1392

    Article  CAS  Google Scholar 

  107. Sarina S, Zhu H-Y, Xiao Q, Jaatinen E, Jia J, Huang Y, Zheng Z, Wu H (2014) Viable photocatalysts under solar-spectrum irradiation: nonplasmonic metal nanoparticles. Angew Chem Int Ed 53:2935–2940

    Article  CAS  Google Scholar 

  108. Wang Y, Yu J, Xiao W, Li Q (2014) Microwave-assisted hydrothermal synthesis of graphene based Au-TiO2 photocatalysts for efficient visible-light hydrogen production. J Mater Chem A 2:3847–3855

    Article  CAS  Google Scholar 

  109. Zhang J, Wang Y, Zhang J, Lin Z, Huang F, Yu J (2012) Enhanced photocatalytic hydrogen production activities of Au-loaded ZnS flowers. ACS Appl Mater Interfaces 5:1031–1037

    Article  CAS  Google Scholar 

  110. Zhang Z, Wang Z, Cao S-W, Xue C (2013) Au/Pt nanoparticle-decorated TiO2 nanofibers with plasmon-enhanced photocatalytic activities for solar-to-fuel conversion. J Phys Chem C 117:25939–25947

    Article  CAS  Google Scholar 

  111. Jang JS, Choi SH, Kim HG, Lee JS (2008) Location and state of Pt in platinized CdS/TiO2 photocatalysts for hydrogen production from water under visible light. J Phys Chem C 112:17200–17205

    Article  CAS  Google Scholar 

  112. Cui E, Lu G (2013) Modulating photogenerated electron transfer and hydrogen production rate by controlling surface potential energy on a selectively exposed Pt facet on Pt/TiO2 for enhancing hydrogen production. J Phys Chem C 117:26415–26425

    Article  CAS  Google Scholar 

  113. Wang Y, Wang Y, Xu R (2013) Photochemical deposition of Pt on CdS for H-2 evolution from water: markedly enhanced activity by controlling Pt reduction environment. J Phys Chem C 117:783–790

    Article  CAS  Google Scholar 

  114. Nguyen M, Tran PD, Pramana SS, Lee RL, Batabyal SK, Mathews N, Wong LH, Graetzel M (2013) In situ photo-assisted deposition of MoS2 electrocatalyst onto zinc cadmium sulphide nanoparticle surfaces to construct an efficient photocatalyst for hydrogen generation. Nanoscale 5:1479–1482

    Article  CAS  Google Scholar 

  115. Wang Q, Yun G, Bai Y, An N, Chen Y, Wang R, Lei Z, Shangguan W (2014) CuS, NiS as co-catalyst for enhanced photocatalytic hydrogen evolution over TiO2. Int J Hydrogen Energy 39:13421–13428

    Article  CAS  Google Scholar 

  116. Yu J, Hai Y, Cheng B (2011) Enhanced photocatalytic H2-production activity of TiO2 by Ni(OH)2 cluster modification. J Phys Chem C 115:4953–4958

    Article  CAS  Google Scholar 

  117. Yu J, Wang S, Cheng B, Lin Z, Huang F (2013) Noble metal-free Ni(OH)(2)-g-C3N4 composite photocatalyst with enhanced visible-light photocatalytic H-2-production activity. Catal Sci Technol 3:1782–1789

    Article  CAS  Google Scholar 

  118. Zhang L, Tian B, Chen F, Zhang J (2012) Nickel sulfide as co-catalyst on nanostructured TiO2 for photocatalytic hydrogen evolution. Int J Hydrog Energy 37:17060–17067

    Article  CAS  Google Scholar 

  119. Hong J, Wang Y, Wang Y, Zhang W, Xu R (2013) Noble-metal-free NiS/C3N4 for efficient photocatalytic hydrogen evolution from water. ChemSusChem 6:2263–2268

    Article  CAS  Google Scholar 

  120. Chen Z, Sun P, Fan B, Zhang Z, Fang X (2014) In situ template-free ion-exchange process to prepare visible-light-active g-C3N4/NiS hybrid photocatalysts with enhanced hydrogen evolution activity. J Phys Chem C 118:7801–7807

    Article  CAS  Google Scholar 

  121. Tran PD, Nguyen M, Pramana SS, Bhattacharjee A, Chiam SY, Fize J, Field MJ, Artero V, Wong LH, Loo J et al (2012) Copper molybdenum sulfide: a new efficient electrocatalyst for hydrogen production from water. Energy Environ Sci 5:8912–8916

    Article  CAS  Google Scholar 

  122. Tran PD, Chiam SY, Boix PP, Ren Y, Pramana SS, Fize J, Artero V, Barber J (2013) Novel cobalt/nickel-tungsten-sulfide catalysts for electrocatalytic hydrogen generation from water. Energy Environ Sci 6:2452–2459

    Article  CAS  Google Scholar 

  123. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473

    Article  CAS  Google Scholar 

  124. Brown KA, Wilker MB, Boehm M, Dukovic G, King PW (2012) Characterization of photochemical processes for H2 production by CdS nanorod–[FeFe] hydrogenase complexes. J Am Chem Soc 134:5627–5636

    Article  CAS  Google Scholar 

  125. Wilker MB, Shinopoulos KE, Brown KA, Mulder DW, King PW, Dukovic G (2014) Electron transfer kinetics in CdS nanorod–[FeFe]-hydrogenase complexes and implications for photochemical H2 generation. J Am Chem Soc 136:4316–4324

    Article  CAS  Google Scholar 

  126. Wen F, Wang X, Huang L, Ma G, Yang J, Li C (2012) A hybrid photocatalytic system comprising ZnS as light harvester and an [Fe2S2] hydrogenase mimic as hydrogen evolution catalyst. ChemSusChem 5:849–853

    Article  CAS  Google Scholar 

  127. Wen F, Yang J, Zong X, Ma B, Wang D, Li C (2011) Photocatalytic H-2 production on hybrid catalyst system composed of inorganic semiconductor and cobaloximes catalysts. J Catal 281:318–324

    Article  CAS  Google Scholar 

  128. Wen F, Li C (2013) Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts. Acc Chem Res 46:2355–2364

    Article  CAS  Google Scholar 

  129. Lounis SD, Runnerstrom EL, Bergerud A, Nordlund D, Milliron DJ (2014) Influence of dopant distribution on the plasmonic properties of indium tin oxide nanocrystals. J Am Chem Soc 136:7110–7116

    Article  CAS  Google Scholar 

  130. Yu J, Yang B, Cheng B (2012) Noble-metal-free carbon nanotube-Cd0.1Zn0.9S composites for high visible-light photocatalytic H-2-production performance. Nanoscale 4:2670–2677

    Article  CAS  Google Scholar 

  131. Chai B, Peng T, Zeng P, Zhang X (2012) Preparation of a MWCNTs/ZnIn2S4 composite and its enhanced photocatalytic hydrogen production under visible-light irradiation. Dalton Trans 41:1179–1186

    Article  CAS  Google Scholar 

  132. Zhang J, Yu J, Jaroniec M, Gong JR (2012) Noble metal-free reduced graphene oxide-ZnxCd1-xS nanocomposite with enhanced solar photocatalytic H-2-production performance. Nano Lett 12:4584–4589

    Article  CAS  Google Scholar 

  133. Chang K, Mei Z, Wang T, Kang Q, Ouyang S, Ye J (2014) MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 8:7078–7087

    Article  CAS  Google Scholar 

  134. Jia T, Kolpin A, Ma C, Chan RC-T, Kwok W-M, Tsang SCE (2014) A graphene dispersed CdS-MoS2 nanocrystal ensemble for cooperative photocatalytic hydrogen production from water. Chem Commun 50:1185–1188

    Article  CAS  Google Scholar 

  135. Lang D, Shen T, Xiang Q (2015) Roles of MoS2 and graphene as cocatalysts in the enhanced visible-light photocatalytic H2 production activity of multiarmed CdS nanorods. ChemCatChem 7:943–951

    Article  CAS  Google Scholar 

  136. Zhu B, Lin B, Zhou Y, Sun P, Yao Q, Chen Y, Gao B (2014) Enhanced photocatalytic H-2 evolution on ZnS loaded with graphene and MoS2 nanosheets as cocatalysts. J Mater Chem A 2:3819–3827

    Article  CAS  Google Scholar 

  137. Lightcap IV, Kosel TH, Kamat PV (2010) Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst Mat. storing and shuttling electrons with reduced graphene oxide. Nano Lett 10:577–583

    Article  CAS  Google Scholar 

  138. Wang D, Kako T, Ye J (2008) Efficient photocatalytic decomposition of acetaldehyde over a solid-solution perovskite (Ag0.75Sr0.25)(Nb0.75Ti0.25)O3 under visible-light irradiation. J Am Chem Soc 130:2724–2725

    Article  CAS  Google Scholar 

  139. Kudo A, Tsuji I, Kato H (2002) AgInZn7S9 solid solution photocatalyst for H-2 evolution from aqueous solutions under visible light irradiation. Chem Commun 38:1958–1959

    Article  CAS  Google Scholar 

  140. Kudo A, Sekizawa M (1999) Photocatalytic H2 evolution under visible light irradiation on Zn1-x Cu x S solid solution. Catal Lett 58:241–243

    Article  CAS  Google Scholar 

  141. Arai T, Senda S-I, Sato Y, Takahashi H, Shinoda K, Jeyadevan B, Tohji K (2008) Cu-doped ZnS hollow particle with high activity for hydrogen generation from alkaline sulfide solution under visible light. Chem Mater 20:1997–2000

    Article  CAS  Google Scholar 

  142. Kale BB, Baeg JO, Lee SM, Chang H, Moon SJ, Lee CW (2006) CdIn2S4 nanotubes and “Marigold” nanostructures: a visible-light photocatalyst. Adv Funct Mater 16:1349–1354

    Article  CAS  Google Scholar 

  143. Li Q, Meng H, Zhou P, Zheng Y, Wang J, Yu J, Gong J (2013) Zn1-xCdxS solid solutions with controlled bandgap and enhanced visible-light photocatalytic H-2-production activity. ACS Catal 3:882–889

    Article  CAS  Google Scholar 

  144. Yu J, Zhang J, Jaroniec M (2010) Preparation and enhanced visible-light photocatalytic H-2-production activity of CdS quantum dots-sensitized Zn1-xCdxS solid solution. Green Chem 12:1611–1614

    Article  CAS  Google Scholar 

  145. Zhang J, Liu S, Yu J, Jaroniec M (2011) A simple cation exchange approach to Bi-doped ZnS hollow spheres with enhanced UV and visible-light photocatalytic H-2-production activity. J Mater Chem 21:14655–14662

    Article  CAS  Google Scholar 

  146. Huang S, Lin Y, Yang J, Li X, Zhang J, Yu J, Shi H, Wang W, Yu Y (2013) Enhanced photocatalytic activity and stability of semiconductor by Ag doping and simultaneous deposition: the case of CdS. RSC Adv 3:20782–20792

    Article  CAS  Google Scholar 

  147. Kimi M, Yuliati L, Shamsuddin M (2012) Preparation of Cu-doped Cd0.1Zn0.9S solid solution by hydrothermal method and its enhanced activity for hydrogen production under visible light irradiation. J Photochem Photobiol A 230:15–22

    Article  CAS  Google Scholar 

  148. Li F, Chen G, Luo J, Huang Q, Luo Y, Meng Q, Li D (2013) Band engineering of Cu2+ doped In2xZn3(1-x)S3 solid solution with high photocatalytic activity for H-2 production under visible light. Catal Sci Technol 3:1993–1999

    Article  CAS  Google Scholar 

  149. Zhang X, Jing D, Guo L (2010) Effects of anions on the photocatalytic H-2 production performance of hydrothermally synthesized Ni-doped Cd0.1Zn0.9S photocatalysts. Int J Hydrog Energy 35:7051–7057

    Article  CAS  Google Scholar 

  150. Wang Y, Wu J, Zheng J, Jiang R, Xu R (2012) Ni2+ − doped ZnxCd1-xS photocatalysts from single-source precursors for efficient solar hydrogen production under visible light irradiation. Catal Sci Technol 2:581–588

    Article  CAS  Google Scholar 

  151. Li F, Luo J, Chen G, Fan Y, Huang Q, Luo Y, Li D, Meng Q (2014) Hydrothermal synthesis of zinc indium sulfide microspheres with Ag+ doping for enhanced H-2 production by photocatalytic water splitting under visible light. Catal Sci Technol 4:1144–1150

    Article  CAS  Google Scholar 

  152. Kimi M, Yuliati L, Shamsuddin M (2011) Photocatalytic hydrogen production under visible light over Cd0.1SnxZn0.9-2xS solid solution photocatalysts. Int J Hydrog Energy 36:9453–9461

    Article  CAS  Google Scholar 

  153. Peng S, An R, Li Y, Lu G, Li S (2012) Remarkable enhancement of photocatalytic hydrogen evolution over Cd0.5Zn0.5S by bismuth-doping. Int J Hydrog Energy 37:1366–1374

    Article  CAS  Google Scholar 

  154. Zhang K, Zhou Z, Guo L (2011) Alkaline earth metal as a novel dopant for chalcogenide solid solution: improvement of photocatalytic efficiency of Cd1-xZnxS by barium surface doping. Int J Hydrog Energy 36:9469–9478

    Article  CAS  Google Scholar 

  155. Zhang K, Jing D, Chen Q, Guo L (2010) Influence of Sr-doping on the photocatalytic activities of CdS-ZnS solid solution photocatalysts. Int J Hydrog Energy 35:2048–2057

    Article  CAS  Google Scholar 

  156. Liu M, Wang L, Lu G, Yao X, Guo L (2011) Twins in Cd1-xZnxS solid solution: highly efficient photocatalyst for hydrogen generation from water. Energy Environ Sci 4:1372–1378

    Article  CAS  Google Scholar 

  157. Liu M, Jing D, Zhou Z, Guo L (2013) Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation. Nat Commun 4:2278

    Google Scholar 

  158. Yu Y, Zhang J, Wu X, Zhao W, Zhang B (2012) Nanoporous single-crystal-like CdxZn1-xS nanosheets fabricated by the cation-exchange reaction of inorganic–organic hybrid ZnS-amine with cadmium ions. Angew Chem Int Ed 51:897–900

    Article  CAS  Google Scholar 

  159. Zheng L, Xu Y, Song Y, Wu C, Zhang M, Xie Y (2009) Nearly monodisperse CuInS2 hierarchical microarchitectures for photocatalytic H2 evolution under visible light. Inorg Chem 48:4003–4009

    Article  CAS  Google Scholar 

  160. Chen F, Zai J, Xu M, Qian X (2013) 3D-hierarchical Cu3SnS4 flowerlike microspheres: controlled synthesis, formation mechanism and photocatalytic activity for H-2 evolution from water. J Mater Chem A 1:4316–4323

    Article  CAS  Google Scholar 

  161. Yonemoto BT, Hutchings GS, Jiao F (2014) A general synthetic approach for ordered mesoporous metal sulfides. J Am Chem Soc 136:8895–8898

    Article  CAS  Google Scholar 

  162. Chen J, Xin F, Yin X, Xiang T, Wang Y (2015) Synthesis of hexagonal and cubic ZnIn2S4 nanosheets for the photocatalytic reduction of CO2 with methanol. RSC Adv 5:3833–3839

    Article  CAS  Google Scholar 

  163. Tian G, Chen Y, Ren Z, Tian C, Pan K, Zhou W, Wang J, Fu H (2014) Enhanced photocatalytic hydrogen evolution over hierarchical composites of ZnIn2S4 nanosheets grown on MoS2 slices. Chem Asian J 9:1291–1297

    Article  CAS  Google Scholar 

  164. Zhou J, Tian GH, Chen YJ, Meng XY, Shi YH, Cao XR, Pan K, Fu HG (2013) In situ controlled growth of ZnIn2S4 nanosheets on reduced graphene oxide for enhanced photocatalytic hydrogen production performance. Chem Commun 49:2237–2239

    Article  CAS  Google Scholar 

  165. Macias-Sanchez SA, Nava R, Hernandez-Morales V, Acosta-Silva YJ, Gomez-Herrera L, Pawelec B, Al-Zahrani SM, Navarro RM, Fierro JLG (2012) Cd1-xZnxS solid solutions supported on ordered mesoporous silica (SBA-15): structural features and photocatalytic activity under visible light. Int J Hydrog Energy 37:9948–9958

    Article  CAS  Google Scholar 

  166. Macias-Sanchez SA, Nava R, Hernandez-Morales V, Acosta-Silva YJ, Pawelec B, Al-Zahrani SM, Navarro RM, Fierro JLG (2013) Cd1-xZnxS supported on SBA-16 as photocatalysts for water splitting under visible light: influence of Zn concentration. Int J Hydrog Energy 38:11799–11810

    Article  CAS  Google Scholar 

  167. Ryu SY, Balcerski W, Lee TK, Hoffmann MR (2007) Photocatalytic production of hydrogen from water with visible light using hybrid catalysts of CdS attached to microporous and mesoporous silicas. J Phys Chem C 111:18195–18203

    Article  CAS  Google Scholar 

  168. Chen Z, Xu Y-J (2013) Ultrathin TiO2 layer coated-CdS spheres core–shell nanocomposite with enhanced visible-light photoactivity. ACS Appl Mater Interfaces 5:13353–13363

    Article  CAS  Google Scholar 

  169. Zhang N, Liu S, Fu X, Xu Y-J (2011) Synthesis of M@TiO2 (M = Au, Pd, Pt) core-shell nanocomposites with tunable photoreactivity. J Phys Chem C 115:9136–9145

    Article  CAS  Google Scholar 

  170. Zhang N, Liu S, Xu Y-J (2012) Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst. Nanoscale 4:2227–2238

    Article  CAS  Google Scholar 

  171. Liu S, Zhang N, Tang Z-R, Xu Y-J (2012) Synthesis of one-dimensional CdS@TiO2 core-shell nanocomposites photocatalyst for selective redox: the dual role of TiO2 shell. ACS Appl Mater Interfaces 4:6378–6385

    Article  CAS  Google Scholar 

  172. Huang L, Wang X, Yang J, Liu G, Han J, Li C (2013) Dual cocatalysts loaded type I CdS/ZnS core/shell nanocrystals as effective and stable photocatalysts for H2 evolution. J Phys Chem C 117:11584–11591

    Article  CAS  Google Scholar 

  173. Thibert A, Frame FA, Busby E, Holmes MA, Osterloh FE, Larsen DS (2011) Sequestering high-energy electrons to facilitate photocatalytic hydrogen generation in CdSe/CdS nanocrystals. J Phys Chem Lett 2:2688–2694

    Article  CAS  Google Scholar 

  174. Xie YP, Yu ZB, Liu G, Ma XL, Cheng H-M (2014) CdS-mesoporous ZnS core-shell particles for efficient and stable photocatalytic hydrogen evolution under visible light. Energy Environ Sci 7:1895–1901

    Article  CAS  Google Scholar 

  175. Long L, Yu X, Wu L, Li J, Li X (2014) Nano-CdS confined within titanate nanotubes for efficient photocatalytic hydrogen production under visible light illumination. Nanotechnology 25:035603

    Google Scholar 

  176. Zhang J, Wang Y, Jin J, Zhang J, Lin Z, Huang F, Yu J (2013) Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires. ACS Appl Mater Interfaces 5:10317–10324

    Article  CAS  Google Scholar 

  177. Zhu H, Song N, Lv H, Hill CL, Lian T (2012) Near unity quantum yield of light-driven redox mediator reduction and efficient H2 generation using colloidal nanorod heterostructures. J Am Chem Soc 134:11701–11708

    Article  CAS  Google Scholar 

  178. Shangguan W, Yoshida A (2001) Synthesis and photocatalytic properties of CdS-intercalated metal oxides. Sol Energy Mater Sol Cells 69:189–194

    Article  CAS  Google Scholar 

  179. Shangguan WF, Yoshida A (2002) Photocatalytic hydrogen evolution from water on nanocomposites incorporating cadmium sulfide into the interlayer. J Phys Chem B 106:12227–12230

    Article  CAS  Google Scholar 

  180. Cui W, Liu Y, Liu L, Hu J, Liang Y (2012) Microwave-assisted synthesis of CdS intercalated K4Nb6O17 and its photocatalytic activity for hydrogen production. Appl Catal A Gen 417:111–118

    Article  CAS  Google Scholar 

  181. Wei Y, Zhang X, Xu J, Wang J, Huang Y, Fan L, Wu J (2014) Enhancement of photocatalytic activity from HCa2TaxNb3-xO10 (x = 0, 1), co-intercalated with sulfides particles. Appl Catal B Environ 147:920–928

    Article  CAS  Google Scholar 

  182. Zhang G, Lin B, Yang W, Jiang S, Yao Q, Chen Y, Gao B (2015) Highly efficient photocatalytic hydrogen generation by incorporating CdS into ZnCr-layered double hydroxide interlayer. RSC Adv 5:5823–5829

    Article  CAS  Google Scholar 

  183. Banerjee S, Mohapatra SK, Das PP, Misra M (2008) Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS. Chem Mater 20:6784–6791

    Article  CAS  Google Scholar 

  184. Kim YK, Park H (2011) Light-harvesting multi-walled carbon nanotubes and CdS hybrids: application to photocatalytic hydrogen production from water. Energy Environ Sci 4:685–694

    Article  CAS  Google Scholar 

  185. Li X, Liu H, Luo D, Li J, Huang Y, Li H, Fang Y, Xu Y, Zhu L (2012) Adsorption of CO2 on heterostructure CdS(Bi2S3)/TiO2 nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation. Chem Eng J 180:151–158

    Article  CAS  Google Scholar 

  186. Yang M-Q, Weng B, Xu Y-J (2013) Improving the visible light photoactivity of In2S3-graphene nanocomposite via a simple surface charge modification approach. Langmuir 29:10549–10558

    Article  CAS  Google Scholar 

  187. Chen Z, Liu S, Yang M-Q, Xu Y-J (2013) Synthesis of uniform CdS nanospheres/graphene hybrid nanocomposites and their application as visible light photocatalyst for selective reduction of nitro organics in water. ACS Appl Mater Interfaces 5:4309–4319

    Article  CAS  Google Scholar 

  188. Zhang N, Zhang Y, Pan X, Fu X, Liu S, Xu Y-J (2011) Assembly of CdS nanoparticles on the two-dimensional graphene scaffold as visible-light-driven photocatalyst for selective organic transformation under ambient conditions. J Phys Chem C 115:23501–23511

    Article  CAS  Google Scholar 

  189. Zhang N, Yang M-Q, Tang Z-R, Xu Y-J (2013) CdS-graphene nanocomposites as visible light photocatalyst for redox reactions in water: a green route for selective transformation and environmental remediation. J Catal 303:60–69

    Article  CAS  Google Scholar 

  190. Weng B, Liu S, Zhang N, Tang Z-R, Xu Y-J (2014) A simple yet efficient visible-light-driven CdS nanowires-carbon nanotube 1D-1D nanocomposite photocatalyst. J Catal 309:146–155

    Article  CAS  Google Scholar 

  191. Liu M, Li F, Sun Z, Ma L, Xu L, Wang Y (2014) Noble-metal-free photocatalysts MoS2-graphene/CdS mixed nanoparticles/nanorods morphology with high visible light efficiency for H-2 evolution. Chem Commun 50:11004–11007

    Article  CAS  Google Scholar 

  192. Yu J, Jin J, Cheng B, Jaroniec M (2014) A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. J Mater Chem A 2:3407–3416

    Article  CAS  Google Scholar 

  193. Liu S, Chen Z, Zhang N, Tang Z-R, Xu Y-J (2013) An efficient self-assembly of CdS nanowires-reduced graphene oxide nanocomposites for selective reduction of nitro organics under visible light irradiation. J Phys Chem C 117:8251–8261

    Article  CAS  Google Scholar 

  194. Liu S, Weng B, Tang Z-R, Xu Y-J (2015) Constructing one-dimensional silver nanowire-doped reduced graphene oxide integrated with CdS nanowire network hybrid structures toward artificial photosynthesis. Nanoscale 7:861–866

    Article  CAS  Google Scholar 

  195. Zhu T, Wu HB, Wang Y, Xu R, Lou XW (2012) Formation of 1D hierarchical structures composed of Ni3S2 nanosheets on CNTs backbone for supercapacitors and photocatalytic H2 production. Adv Energy Mater 2:1497–1502

    Article  CAS  Google Scholar 

  196. Han B, Liu S, Xu Y-J, Tang Z-R (2015) 1D CdS nanowire-2D BiVO4 nanosheet heterostructures toward photocatalytic selective fine-chemical synthesis. RSC Adv 5:16476–16483

    Article  CAS  Google Scholar 

  197. Han C, Chen Z, Zhang N, Colmenares JC, Xu Y-J (2015) Hierarchically CdS decorated 1D ZnO nanorods-2D graphene hybrids: low temperature synthesis and enhanced photocatalytic performance. Adv Funct Mater 25:221–229

    Article  CAS  Google Scholar 

  198. An X, Yu JC, Tang J (2014) Biomolecule-assisted fabrication of copper doped SnS2 nanosheet-reduced graphene oxide junctions with enhanced visible-light photocatalytic activity. J Mater Chem A 2:1000–1005

    Article  CAS  Google Scholar 

  199. Tang Z-R, Yu Q, Xu Y-J (2014) Toward improving the photocatalytic activity of BiVO4-graphene 2D-2D composites under visible light by the addition of mediator. RSC Adv 4:58448–58452

    Article  CAS  Google Scholar 

  200. Fang Z, Wang Y, Song J, Sun Y, Zhou J, Xu R, Duan H (2013) Immobilizing CdS quantum dots and dendritic Pt nanocrystals on thiolated graphene nanosheets toward highly efficient photocatalytic H-2 evolution. Nanoscale 5:9830–9838

    Article  CAS  Google Scholar 

  201. Cao S-W, Yuan Y-P, Fang J, Shahjamali MM, Boey FYC, Barber J, Loo SCJ, Xue C (2013) In-situ growth of CdS quantum dots on g-C3N4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation. Int J Hydrog Energy 38:1258–1266

    Article  CAS  Google Scholar 

  202. Zhang J, Zhu Z, Feng X (2014) Construction of two-dimensional MoS2/CdS p-n nanohybrids for highly efficient photocatalytic hydrogen evolution. Chem Eur J 20:10632–10635

    Article  CAS  Google Scholar 

  203. Chen J, Wu X-J, Yin L, Li B, Hong X, Fan Z, Chen B, Xue C, Zhang H (2015) One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew Chem Int Ed 54:1210–1214

    Article  CAS  Google Scholar 

  204. Qi L, Yu J, Jaroniec M (2011) Preparation and enhanced visible-light photocatalytic H-2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets. Phys Chem Chem Phys 13:8915–8923

    Article  CAS  Google Scholar 

  205. Zhang J, Zhu Z, Tang Y, Muellen K, Feng X (2014) Titania nanosheet-mediated construction of a two-dimensional titania/cadmium sulfide heterostructure for high hydrogen evolution activity. Adv Mater 26:734–738

    Article  CAS  Google Scholar 

  206. Kim HN, Kim TW, Kim IY, Hwang S-J (2011) Cocatalyst-free photocatalysts for efficient visible-light-induced H-2 production: porous assemblies of CdS quantum dots and layered titanate nanosheets. Adv Funct Mater 21:3111–3118

    Article  CAS  Google Scholar 

  207. Low J, Cao S, Yu J, Wageh S (2014) Two-dimensional layered composite photocatalysts. Chem Commun 50:10768–10777

    Article  CAS  Google Scholar 

  208. Hou Y, Laursen AB, Zhang J, Zhang G, Zhu Y, Wang X, Dahl S, Chorkendorff I (2013) Layered nanojunctions for hydrogen-evolution catalysis. Angew Chem Int Ed 52:3621–3625

    Article  CAS  Google Scholar 

  209. Ge L, Han C, Xiao X, Guo L (2013) Synthesis and characterization of composite visible light active photocatalysts MoS2-g-C3N4 with enhanced hydrogen evolution activity. Int J Hydrog Energy 38:6960–6969

    Article  CAS  Google Scholar 

  210. Xiang Q, Yu J, Jaroniec M (2012) Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H-2 production activity of TiO2 nanoparticles. J Am Chem Soc 134:6575–6578

    Article  CAS  Google Scholar 

  211. Li Y, Wang H, Peng S (2014) Tunable photodeposition of MoS2 onto a composite of reduced graphene oxide and CdS for synergic photocatalytic hydrogen generation. J Phys Chem C 118:19842–19848

    Article  CAS  Google Scholar 

  212. Li X, Xia T, Xu C, Murowchick J, Chen X (2014) Synthesis and photoactivity of nanostructured CdS-TiO2 composite catalysts. Catal Today 225:64–73

    Article  CAS  Google Scholar 

  213. Ge L, Zuo F, Liu J, Ma Q, Wang C, Sun D, Bartels L, Feng P (2012) Synthesis and efficient visible light photocatalytic hydrogen evolution of polymeric g-C3N4 coupled with CdS quantum dots. J Phys Chem C 116:13708–13714

    Article  CAS  Google Scholar 

  214. Fu J, Chang B, Tian Y, Xi F, Dong X (2013) Novel C3N4-CdS composite photocatalysts with organic–inorganic heterojunctions: in situ synthesis, exceptional activity, high stability and photocatalytic mechanism. J Mater Chem A 1:3083–3090

    Article  CAS  Google Scholar 

  215. Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K (2006) All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nat Mater 5:782–786

    Article  CAS  Google Scholar 

  216. Yun HJ, Lee H, Kim ND, Lee DM, Yu S, Yi J (2011) A combination of two visible-light responsive photocatalysts for achieving the Z-scheme in the solid state. ACS Nano 5:4084–4090

    Article  CAS  Google Scholar 

  217. Li J, Cushing SK, Zheng P, Senty T, Meng F, Bristow AD, Manivannan A, Wu N (2014) Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer. J Am Chem Soc 136:8438–8449

    Article  CAS  Google Scholar 

  218. Iwashina K, Iwase A, Ng YH, Amal R, Kudo A (2015) Z-schematic water splitting into H-2 and O-2 using metal sulfide as a hydrogen-evolving photocatalyst and reduced graphene oxide as a solid-state electron mediator. J Am Chem Soc 137:604–607

    Article  CAS  Google Scholar 

  219. Wang X, Liu G, Chen Z-G, Li F, Wang L, Lu GQ, Cheng H-M (2009) Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chem Commun 45:3452–3454

    Article  CAS  Google Scholar 

  220. Wang X, Liu G, Wang L, Chen Z-G, Lu GQ, Cheng H-M (2012) ZnO-CdS@Cd heterostructure for effective photocatalytic hydrogen generation. Adv Energy Mater 2:42–46

    Article  CAS  Google Scholar 

  221. Yu ZB, Xie YP, Liu G, Lu GQ, Ma XL, Cheng H-M (2013) Self-assembled CdS/Au/ZnO heterostructure induced by surface polar charges for efficient photocatalytic hydrogen evolution. J Mater Chem A 1:2773–2776

    Article  CAS  Google Scholar 

  222. Wang X, Yin L, Liu G (2014) Light irradiation-assisted synthesis of ZnO-CdS/reduced graphene oxide heterostructured sheets for efficient photocatalytic H-2 evolution. Chem Commun 50:3460–3463

    Article  CAS  Google Scholar 

  223. Peng Y, Guo Z, Yang J, Wang D, Yuan W (2014) Enhanced photocatalytic H-2 evolution over micro-SiC by coupling with CdS under visible light irradiation. J Mater Chem A 2:6296–6300

    Article  CAS  Google Scholar 

  224. Zhang LJ, Li S, Liu BK, Wang DJ, Xie TF (2014) Highly efficient CdS/WO3 photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic H-2 evolution under visible light. ACS Catal 4:3724–3729

    Article  CAS  Google Scholar 

  225. Ma G, Yan H, Shi J, Zong X, Lei Z, Li C (2008) Direct splitting of H(2)S into H(2) and S on CdS-based photocatalyst under visible light irradiation. J Catal 260:134–140

    Article  CAS  Google Scholar 

  226. Tang ML, Grauer DC, Lassalle-Kaiser B, Yachandra VK, Amirav L, Long JR, Yano J, Alivisatos AP (2011) Structural and electronic study of an amorphous MoS3 hydrogen-generation catalyst on a quantum-controlled photosensitizer. Angew Chem Int Ed 50:10203–10207

    Article  CAS  Google Scholar 

  227. Peng T, Zhang X, Zeng P, Li K, Zhang X, Li X (2013) Carbon encapsulation strategy of Ni co-catalyst: Highly efficient and stable Ni@C/CdS nanocomposite photocatalyst for hydrogen production under visible light. J Catal 303:156–163

    Article  CAS  Google Scholar 

  228. Zhang LJ, Xie TF, Wang DJ, Li S, Wang LL, Chen LP, Lu YC (2013) Noble-metal-free CuS/CdS composites for photocatalytic H-2 evolution and its photogenerated charge transfer properties. Int J Hydrog Energy 38:11811–11817

    Article  CAS  Google Scholar 

  229. Li Z-J, Wang J-J, Li X-B, Fan X-B, Meng Q-Y, Feng K, Chen B, Tung C-H, Wu L-Z (2013) An exceptional artificial photocatalyst, Nih-CdSe/CdS core/shell hybrid, made in situ from CdSe quantum dots and nickel salts for efficient hydrogen evolution. Adv Mater 25:6613–6618

    Article  CAS  Google Scholar 

  230. Hou J, Yang C, Cheng H, Wang Z, Jiao S, Zhu H (2013) Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4 heterostructures for efficient photocatalytic H-2 production. Phys Chem Chem Phys 15:15660–15668

    Article  CAS  Google Scholar 

  231. Zhang W, Zhong Z, Wang Y, Xu R (2008) Doped solid solution: (Zn0.95Cu0.05)(1-x)CdxS nanocrystals with high activity for H-2 evolution from aqueous solutions under visible light. J Phys Chem C 112:17635–17642

    Article  CAS  Google Scholar 

  232. Shen S, Zhao L, Zhou Z, Guo L (2008) Enhanced photocatalytic hydrogen evolution over Cu-doped ZnIn2S4 under visible light irradiation. J Phys Chem C 112:16148–16155

    Article  CAS  Google Scholar 

  233. Wang L, Wang W, Sun S (2012) A simple template-free synthesis of ultrathin Cu2ZnSnS4 nanosheets for highly stable photocatalytic H-2 evolution. J Mater Chem 22:6553–6555

    Article  CAS  Google Scholar 

  234. Liu M, Zhang L, He X, Zhang B, Song H, Li S, You W (2014) L-Cystine-assisted hydrothermal synthesis of Mn1-xCdxS solid solutions with hexagonal wurtzite structure for efficient photocatalytic hydrogen evolution under visible light irradiation. J Mater Chem A 2:4619–4626

    Article  CAS  Google Scholar 

  235. Wang Y, Wu J, Zheng J, Xu R (2011) Highly active ZnxCd1-xS photocatalysts containing earth abundant elements only for H2 production from water under visible light. Catal Sci Technol 1:940–947

    Article  CAS  Google Scholar 

  236. Han Z, Chen G, Li C, Yu Y, Zhou Y (2015) Preparation of 1D cubic Cd0.8Zn0.2S solid-solution nanowires using levelling effect of TGA and improved photocatalytic H-2-production activity. J Mater Chem A 3:1696–1702

    Article  CAS  Google Scholar 

  237. Xu M, Zai J, Yuan Y, Qian X (2012) Band gap-tunable (CuIn)(x)Zn2(1-x)S2 solid solutions: preparation and efficient photocatalytic hydrogen production from water under visible light without noble metals. J Mater Chem 22:23929–23934

    Article  CAS  Google Scholar 

  238. Tian F, Zhu RS, Song KL, Ouyang F, Cao G (2015) The effects of amount of La on the photocatalytic performance of ZnIn2S4 for hydrogen generation under visible light. Int J Hydrog Energy 40:2141–2148

    Article  CAS  Google Scholar 

  239. Zhang K, Jing D, Xing C, Guo L (2007) Significantly improved photocatalytic hydrogen production activity over Cd1-xZnxS photocatalysts prepared by a novel thermal sulfuration method. Int J Hydrog Energy 32:4685–4691

    Article  CAS  Google Scholar 

  240. Wang L, Wang W, Shang M, Yin W, Sun S, Zhang L (2010) Enhanced photocatalytic hydrogen evolution under visible light over Cd1-xZnxS solid solution with cubic zinc blend phase. Int J Hydrog Energy 35:19–25

    Article  CAS  Google Scholar 

  241. Wang J, Li B, Chen J, Li L, Zhao J, Zhu Z (2013) Hierarchical assemblies of CdxZn1-xS complex architectures and their enhanced visible-light photocatalytic activities for H-2-production. J Alloys Compd 578:571–576

    Article  CAS  Google Scholar 

  242. Zhou H, Liu Q, Liu W, Ge J, Lan M, Wang C, Geng J, Wang P (2014) Template-free preparation of volvox-like CdxZn1-xS nanospheres with cubic phase for efficient photocatalytic hydrogen production. Chem Asian J 9:811–818

    Article  CAS  Google Scholar 

Download references

Acknowledgment

J. Yu would like to thank the 973 program (2013CB632402), and NSFC (51272199, 51320105001 and 21433007) and X. Li would like to thank NSFC (20906034), and industry and research collaborative innovation major projects of Guangzhou (201508020098) and the State Key Laboratory of Advanced Technology for Material Synthesis and Processing (Wuhan University of Technology) (2015-KF-7) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaguo Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, X., Yu, J. (2016). Water Splitting By Photocatalytic Reduction. In: Colmenares, J., Xu, YJ. (eds) Heterogeneous Photocatalysis. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48719-8_6

Download citation

Publish with us

Policies and ethics