Skip to main content

Fundamental Processes in Surface Photocatalysis on TiO2

  • Chapter
  • First Online:

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Due to the potential applications of TiO2 in photocatalytic hydrogen production and pollutant degradation, over the past few decades, we have witnessed the fast-growing interest and effort in developing TiO2-based photocatalysts, improving the efficiency, and exploring the reaction mechanism at the atomic and molecular level. Since surface science studies on single crystal surfaces under UHV conditions could provide fundamental insights into these important processes, both thermal chemistry and photo-chemistry on TiO2, especially on rutile TiO2(110) surface, have been extensively investigated with a variety of experimental and theoretical approaches. In this chapter, we start from the properties of TiO2 and then focus on charge transport and trapping and electron transfer dynamics. Next, we summarize recent progresses made in the study of elementary photocatalytic chemistry of oxygen and methanol on mainly rutile TiO2(110) along with some studies on rutile TiO2(011) and anatase TiO2(101) and (001). These studies have provided fundamental insights into surface photocatalysis as well as stimulated new investigations in this exciting area. At the end of this chapter, implications of these studies for the development of new photocatalysis models are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schneider J, Matsuoka M, Takeuchi M et al (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986

    Article  CAS  Google Scholar 

  2. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    Article  CAS  Google Scholar 

  3. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  4. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C Photochem Rev 13:169–189

    Article  CAS  Google Scholar 

  5. Ma Y, Wang X, Li C et al (2014) Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem Rev 114:9987–10043

    Article  CAS  Google Scholar 

  6. Dambournet D, Belharouak I, Amine K (2010) Tailored preparation methods of TiO2 anatase, rutile, brookite: mechanism of formation and electrochemical properties. Chem Mater 22:1173–1179

    Article  CAS  Google Scholar 

  7. Nosheen S, Galasso FS, Suib SL (2009) Role of Ti–O bonds in phase transitions of TiO2. Langmuir 25:7623–7630

    Article  CAS  Google Scholar 

  8. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229

    Article  CAS  Google Scholar 

  9. Zhang J, Li MJ, Li C et al (2006) UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk. J Phys Chem B 110:927–935

    Article  CAS  Google Scholar 

  10. Su WG, Zhang J, Li C et al (2008) Surface phases of TiO2 nanoparticles studied by UV Raman spectroscopy and FT-IR spectroscopy. J Phys Chem C 112:7710–7716

    Article  CAS  Google Scholar 

  11. Shi JY, Chen J, Li C et al (2007) Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture. J Phys Chem C 111:693–699

    Article  CAS  Google Scholar 

  12. Zhang J, Xu Q, Li C et al (2009) UV Raman spectroscopic study on TiO2. II. effect of nanoparticle size on the outer/inner phase transformations. J Phys Chem C 113:1698–1704

    Article  CAS  Google Scholar 

  13. Xu QA, Zhang J, Li C (2010) Surface structural transformation and the phase transition kinetics of brookite TiO2. Chem Asian J 5:2158–2161

    Article  CAS  Google Scholar 

  14. Zhang HZ, Banfield JF (2000) Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J Phys Chem B 104:3481–3487

    Article  CAS  Google Scholar 

  15. Yang HG, Sun CH, Lu GQ et al (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453:638–641

    Article  CAS  Google Scholar 

  16. Liang Y, Gan S, Chambers SA, Eltman EI (2001) Surface structure of anatase TiO2(001): reconstruction, atomic steps, and domains. Phys Rev B 63:303–306

    Article  CAS  Google Scholar 

  17. He Y, Dulub O, Diebold U (2009) Evidence for the predominance of subsurface defects on reduced anatase TiO2(101). Phys Rev Lett 102:106105

    Article  CAS  Google Scholar 

  18. Tachibana Y, Vayssieres L, Durrant JR (2012) Artificial photosynthesis for solar water-splitting. Nat Photonics 6:511–518

    Article  CAS  Google Scholar 

  19. Kapilashrami M, Zhang Y, Guo J (2014) Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem Rev 114:9662–9707

    Article  CAS  Google Scholar 

  20. Asahi R, Taga Y, Mannstadt W, Freeman A (2000) Electronic and optical properties of anatase TiO2. J Phys Rev B 61:7459–7465

    Article  CAS  Google Scholar 

  21. Tuller HL, Series ED (2012) Photoelectrochemical hydrogen production; electronic materials: science & technology, vol 102. Springer, New York/Dordrecht/Heidelberg/London

    Google Scholar 

  22. Schottky WZ (1939) Zur halbleitertheorie der sperrschicht- und spitzengleichrichter. Zeitschrift Für Physik 113:367–414

    Article  CAS  Google Scholar 

  23. Schottky W (1938) Halbleitertheorie der sperrschicht. Naturwissenschaften 26:843–843

    Article  CAS  Google Scholar 

  24. Mott NF (1939) The theory of crystal rectifiers. Proc R Soc London Ser A 171:27–38

    Article  Google Scholar 

  25. Mott NF (1938) Note on the contact between a metal and an insulator or semi-conductor. Proc Camb Philos Soc 34:568–572

    Article  CAS  Google Scholar 

  26. Zhang Z, Yates JT Jr (2012) Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem Rev 112:5520–5551

    Article  CAS  Google Scholar 

  27. Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  28. Hardman PJ, Raikar GN, Bullett DW et al (1994) Valence-band structure of TiO2 along the Γ-Δ-X and Γ-Σ-M directions. Phys Rev B 49:7170

    Article  CAS  Google Scholar 

  29. Lindan PJD, Harrison NM, Gillan MJ et al (1997) First-principles spin-polarized calculations on the reduced and reconstructed TiO2 (110) surface. Phys Rev B 55:15919

    Article  CAS  Google Scholar 

  30. Deskins NA, Rousseau R, Dupuis M (2010) Defining the role of excess electrons in the surface chemistry of TiO2. J Phys Chem C 114:5891–5897

    Article  CAS  Google Scholar 

  31. Martinez U, Hammer B (2011) Adsorption properties versus oxidation states of rutile TiO2 (110). J Chem Phys 134:194703

    Article  CAS  Google Scholar 

  32. Henderson MA (2011) A surface science perspective on photocatalysis. Surf Sci Rep 66:185–297

    Article  CAS  Google Scholar 

  33. Hoffmann MR, Martin ST, Choi W et al (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  34. Berger T, Sterrer M, Diwald O et al (2005) Charge trapping and photoadsorption of O2 on dehydroxylated TiO2 nanocrystals–an electron paramagnetic resonance study. Chemphyschem 6:2104–2112

    Article  CAS  Google Scholar 

  35. Gundlach L, Felber S, Willig F et al (2005) Surface electron transfer dynamics in the presence of organic chromophores. Res Chem Intermed 31:39–46

    Article  CAS  Google Scholar 

  36. Gundlach L, Ernstorfer R, Willig F (2006) Escape dynamics of photoexcited electrons at catechol: TiO2 (110). Phys Rev B 74:035324

    Article  CAS  Google Scholar 

  37. Nilius N, Ernst N, Freund H (2001) On energy transfer processes at cluster–oxide interfaces: silver on titania. J Chem Phys Lett 349:351–357

    Article  CAS  Google Scholar 

  38. Yamada Y, Kanemitsu Y (2010) Blue photoluminescence of highly photoexcited rutile TiO2: nearly degenerate conduction-band effects. Phys Rev B 82:113103

    Article  CAS  Google Scholar 

  39. Yamada Y, Kanemitsu Y (2011) Photoluminescence spectrum and dynamics in highly photoexcited rutile TiO2. Phys Status Solidi C 8:104–107

    Article  CAS  Google Scholar 

  40. Sporleder D, Wilson DP, White MG (2009) Final state distributions of O2 photodesorbed from TiO2 (110). J Phys Chem C 113:13180–13191

    Article  CAS  Google Scholar 

  41. Diwald O, Thompson TL, Yates JT Jr (2004) The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystals. J Phys Chem B 108:52–57

    Article  CAS  Google Scholar 

  42. Turner GM, Beard MC, Schmuttenmaer CA (2002) Carrier localization and cooling in dye-sensitized nanocrystalline titanium dioxide. J Phys Chem B 106:11716–11719

    Article  CAS  Google Scholar 

  43. Grela MA, Brusa MA, Colussi AJ (1997) Harnessing excess photon energy in photoinduced surface electron transfer between salicylate and illuminated titanium dioxide nanoparticles. J Phys Chem B 101:10986–10989

    Article  CAS  Google Scholar 

  44. Grela MA, Colussi AJ (1999) Photon energy and photon intermittence effects on the quantum efficiency of photoinduced oxidations in crystalline and metastable TiO2 colloidal nanoparticles. J Phys Chem B 103:2614–2619

    Article  CAS  Google Scholar 

  45. Grela MA, Brusa MA, Colussi AJ (1999) Efficiency of hot carrier trapping by outer-sphere redox probes at quantum dot interfaces. J Phys Chem B 103:6400–6402

    Article  CAS  Google Scholar 

  46. Morishita T, Hibara A, Sawada T, Tsuyumoto I (1999) Ultrafast charge transfer at TiO2/SCN-(aq) interfaces investigated by femtosecond transient reflecting grating method. J Phys Chem B 103:5984–5987

    Article  CAS  Google Scholar 

  47. Bahnemann DW, Hilgendorff M, Memming R (1997) Charge carrier dynamics at TiO2 particles: 090009 reactivity of free and trapped holes. J Phys Chem B 101:4265–4275

    Article  CAS  Google Scholar 

  48. Yoshihara T, Katoh R, Tachiya M et al (2004) Identification of reactive species in photoexcited nanocrystalline TiO2 films by wide-wavelength-range (400–2500 nm) transient absorption spectroscopy. J Phys Chem B 108:3817–3823

    Article  CAS  Google Scholar 

  49. Tamaki Y, Furube A, Murai M et al (2006) Direct observation of reactive trapped holes in TiO2 undergoing photocatalytic oxidation of adsorbed alcohols: evaluation of the reaction rates and yields. J Am Chem Soc 128:416–417

    Article  CAS  Google Scholar 

  50. Tamaki Y, Furube A, Tachiya M et al (2007) Dynamics of efficient electron–hole separation in TiO2 nanoparticles revealed by femtosecond transient absorption spectroscopy under the weak-excitation condition. Phys Chem Chem Phys 9:1453–1460

    Article  CAS  Google Scholar 

  51. Nakaoka Y, Nosaka Y (1997) ESR investigation into the effects of heat treatment and crystal structure on radicals produced over irradiated TiO2 powder. J Photochem Photobiol A 110:299–305

    Article  CAS  Google Scholar 

  52. Jenkins CA, Murphy DM (1999) Thermal and photoreactivity of TiO2 at the gas-solid interface with aliphatic and aromatic aldehydes. J Phys Chem B 103:1019–1026

    Article  CAS  Google Scholar 

  53. Kowalski PM, Camellone MF, Nair NN, Meyer B, Marx D (2010) Charge localization dynamics induced by oxygen vacancies on the TiO2 (110) surface. Phys Rev Lett 105:146405

    Article  CAS  Google Scholar 

  54. Ganduglia-Pirovano MV, Hofmann A, Sauer J (2007) Oxygen vacancies in transition metal and rare earth oxides: current state of understanding and remaining challenges. Surf Sci Rep 62:219–270

    Article  CAS  Google Scholar 

  55. Qu ZW, Kroes G-J (2006) Theoretical study of the electronic structure and stability of titanium dioxide clusters (TiO2)n with n = 1–9. J Phys Chem B 110:8998–9007

    Article  CAS  Google Scholar 

  56. Miyagi T, Kamei M, Mitsuhashi T et al (2004) Charge separation at the rutile/anatase interface: a dominant factor of photocatalytic activity. Chem Phys Lett 390:399–402

    Article  CAS  Google Scholar 

  57. Kamei M, Miyagi T, Ishigaki T (2005) Strain-induced charge separation in the photocatalytic single crystalline anatase TiO2 film. Chem Phys Lett 407:209–212

    Article  CAS  Google Scholar 

  58. Planelles J, Movilla JL (2006) Trapping electrons in semiconductor air bubbles: a theoretical approach. Phys Rev B 73:235350

    Article  CAS  Google Scholar 

  59. Deskins NA, Dupuis M (2007) Electron transport via polaron hopping in bulk TiO2: a density functional theory characterization. Phys Rev B 75(19):195212

    Article  CAS  Google Scholar 

  60. Agrell HG, Boschloo G, Hagfeldt A (2004) Conductivity studies of nanostructured TiO2 films permeated with electrolyte. J Phys Chem B 108:12388–12396

    Article  CAS  Google Scholar 

  61. Mora-Sero I, Bisquert J (2003) Fermi level of surface states in TiO2 nanoparticles. Nano Lett 3:945–949

    Article  CAS  Google Scholar 

  62. Barzykin AV, Tachiya M (2002) Mechanism of charge recombination in dye-sensitized nanocrystalline semiconductors: random flight model. J Phys Chem B 106:4356–4363

    Article  CAS  Google Scholar 

  63. Shkrob IA, Sauer MC Jr (2004) Hole scavenging and photo-stimulated recombination of electron-hole pairs in aqueous TiO2 nanoparticles. J Phys Chem B 108:12497–12511

    Article  CAS  Google Scholar 

  64. Beermann N, Boschloo G, Hagfeldt A (2002) Trapping of electrons in nanostructured TiO2 studied by photocurrent transients. J Photochem Photobiol A 152:213–218

    Article  CAS  Google Scholar 

  65. van de Lagemaat J, Frank AJ (2001) Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: transient photocurrent and random-walk modeling studies. J Phys Chem B 105:11194–11205

    Article  CAS  Google Scholar 

  66. Komaguchi K, Nakano H, Araki A et al (2006) Photoinduced electron transfer from anatase to rutile in partially reduced TiO2(P-25) nanoparticles: an ESR study. Chem Phys Lett 428:338–342

    Article  CAS  Google Scholar 

  67. Peiro AM, Colombo C, Doyle G et al (2006) Photochemical reduction of oxygen adsorbed to nanocrystalline TiO2 films: a transient absorption and oxygen scavenging study of different TiO2 preparations. J Phys Chem B 110:23255–23263

    Article  CAS  Google Scholar 

  68. Takahashi H, Watanabe R, Miyauchi Y et al (2011) Discovery of deep and shallow trap states from step structures of rutile TiO2 vicinal surfaces by second harmonic and sum frequency generation spectroscopy. J Chem Phys 134:154704

    Article  CAS  Google Scholar 

  69. Kerisit S, Deskins NA, Rosso KM et al (2008) A shell model for atomistic simulation of charge transfer in titania. J Phys Chem C 112:7678–7688

    Article  CAS  Google Scholar 

  70. Shapovalov V, Stefanovich EV, Truong TN (2002) Nature of the excited states of the rutile TiO2(110) surface with adsorbed water. Surf Sci 498:L103–L108

    Article  CAS  Google Scholar 

  71. Yang XJ, Tamai N (2001) How fast is interfacial hole transfer? In situ monitoring of carrier dynamics in anatase TiO2 nanoparticles by femtosecond laser spectroscopy. Phys Chem Chem Phys 3:3393–3398

    Article  CAS  Google Scholar 

  72. Tamaki Y, Furube A, Katoh R et al (2006) Trapping dynamics of electrons and holes in a nanocrystalline TiO2 film revealed by femtosecond visible/near-infrared transient absorption spectroscopy. C R Chim 9:268–274

    Article  CAS  Google Scholar 

  73. Thompson TL, Yates JT Jr (2005) Monitoring hole trapping in photoexcited TiO2(110) using a surface photoreaction. J Phys Chem B 109:18230–18236

    Article  CAS  Google Scholar 

  74. Berger T, Sterrer M, Diwald O et al (2005) Light-induced charge separation in anatase TiO2 particles. J Phys Chem B 109:6061–6068

    Article  CAS  Google Scholar 

  75. Tang H, Levy F, Berger H (1995) Urbach tail of anatase TiO2. Phys Rev B 52:7771

    Article  CAS  Google Scholar 

  76. Stevanovic A, Buettner M, Zhang Z et al (2012) Photoluminescence of TiO2: effect of UV light and adsorbed molecules on surface band structure. J Am Chem Soc 134:324

    Article  CAS  Google Scholar 

  77. Murakami M, Matsumoto Y, Nakajima K et al (2001) Anatase TiO2 thin films grown on lattice-matched LaAlO3 substrate by laser molecular-beam epitaxy. Appl Phys Lett 78:2664–2666

    Article  CAS  Google Scholar 

  78. Shi J, Chen J, Feng Z et al (2007) Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture. J Phys Chem C 111:693–699

    Article  CAS  Google Scholar 

  79. Knorr FJ, Mercado CC, McHale JL (2008) Trap-state distributions and carrier transport in pure and mixed-phase TiO2: influence of contacting solvent and interphasial electron transfer. J Phys Chem C 112:12786–12794

    Article  CAS  Google Scholar 

  80. Yamada Y, Kanemitsu Y (2012) Determination of electron and hole lifetimes of rutile and anatase TiO2 single crystals. Appl Phys Lett 101:133907

    Article  CAS  Google Scholar 

  81. Dozzi MV, D’Andrea C, Ohtani B et al (2013) Fluorine-doped TiO2 materials: photocatalytic activity vs time-resolved photoluminescence. J Phys Chem C 117:25586–25595

    Article  CAS  Google Scholar 

  82. Leytner S, Hupp JT (2000) Evaluation of the energetics of electron trap states at the nanocrystalline titanium dioxide/aqueous solution interface via time-resolved photoacoustic spectroscopy. Chem Phys Lett 330:231–236

    Article  CAS  Google Scholar 

  83. Kim SH, Stair PC, Weitz E (1999) UV-induced desorption of CH3X(X = I and Br)/TiO2(110). J Chem Phys 108:5080–5088

    Article  Google Scholar 

  84. Kim SH, Stair PC, Weitz E (1999) Substrate-mediated photodesorption from multilayers of CH3I on TiO2(110) at 90 K. Chem Phys Lett 302:511–516

    Article  CAS  Google Scholar 

  85. Antoniewicz PR (1980) Model for electron-stimulated and photo-stimulated desorption. Phys Rev B 21:3811–3815

    Article  CAS  Google Scholar 

  86. Asahi T, Furube A, Masuhara H (1997) Direct measurement of picosecond interfacial electron transfer from photoexcited TiO2 powder to an adsorbed molecule in the opaque suspension. Chem Phys Lett 275:234–238

    Article  CAS  Google Scholar 

  87. Martino DM, van Willigen H, Spitler MT (1997) FT-EPR study of photoinduced electron transfer at the surface of TiO2 nanoparticles. J Phys Chem B 101:8914–8919

    Article  CAS  Google Scholar 

  88. Colombo DP, Bowman RM (1996) Does interfacial charge transfer compete with charge carrier recombination? A femtosecond diffuse reflectance investigation of TiO2 nanoparticles. J Phys Chem 100:18445–18449

    Article  CAS  Google Scholar 

  89. Furube A, Asahi T, Masuhara H et al (2001) Direct observation of interfacial hole transfer from a photoexcited TiO2 particle to an adsorbed molecule SCN- by femtosecond diffuse reflectance spectroscopy. Res Chem Intermed 27:177–187

    Article  CAS  Google Scholar 

  90. Rabani J, Yamashita K, Ushida K et al (1998) Fundamental reactions in illuminated titanium dioxide nanocrystallite layers studied by pulsed laser. J Phys Chem B 102:1689–1695

    Article  CAS  Google Scholar 

  91. Shkrob IA, Sauer MC (2004) Efficient, rapid photooxidation of chemisorbed polyhydroxyl alcohols and carbohydrates by TiO2 nanoparticles in an aqueous solution. J Phys Chem B 108:12512–12517

    Article  CAS  Google Scholar 

  92. Wang YH, Hang K, Anderson NA et al (2003) Comparison of electron transfer dynamics in molecule-to-nanoparticle and intramolecular charge transfer complexes. J Phys Chem B 107:9434–9440

    Article  CAS  Google Scholar 

  93. He JJ, Lindstrom H, Hagfeldt A et al (1999) Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell. J Phys Chem B 103:8940–8943

    Article  CAS  Google Scholar 

  94. Borgstrom M, Blart E, Boschloo G et al (2005) Sensitized hole injection of phosphorus porphyrin into NiO: toward new photovoltaic devices. J Phys Chem B 109:22928–22934

    Article  CAS  Google Scholar 

  95. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev 1:1–21

    Article  CAS  Google Scholar 

  96. Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93(1):341–357

    Article  CAS  Google Scholar 

  97. Ni M, Leung MK, Leung HDYC et al (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11:401–425

    Article  CAS  Google Scholar 

  98. Li YF, Aschauer U, Chen J et al (2014) Adsorption and reactions of O2 on anatase TiO2. Acc Chem Res 47:3361–3368

    Article  CAS  Google Scholar 

  99. Henderson MA, Epling WS, Perkins CL et al (1999) Interaction of molecular oxygen with the vacuum-annealed TiO2(110) surface: molecular and dissociative channels. J Phys Chem B 103:5328–5337

    Article  CAS  Google Scholar 

  100. Rasmussen MD, Molina LM, Hammer B (2004) Adsorption, diffusion, and dissociation of molecular oxygen at defected TiO2(110): a density functional theory study. J Chem Phys 120:988–997

    Article  CAS  Google Scholar 

  101. Du YG, Deskins NA, Zhang ZR et al (2010) Formation of O adatom pairs and charge transfer upon O2 dissociation on reduced TiO2(110). Phys Chem Chem Phys 12:6337–6344

    Article  CAS  Google Scholar 

  102. Di Valentin C, Pacchioni G, Selloni A (2009) Reduced and n-type doped TiO2: nature of Ti3+ species. J Phys Chem C 113:20543–20552

    Article  CAS  Google Scholar 

  103. Tilocca A, Selloni A (2005) O2 and vacancy diffusion on rutile(110): pathways and electronic properties. Chem Phys Chem 6:1911–1916

    CAS  Google Scholar 

  104. Dohnálek Z, Kim J, Bondarchuk O et al (2006) Physisorption of N2, O2, and CO on fully oxidized TiO2(110). J Phys Chem B 110:6229–6235

    Article  CAS  Google Scholar 

  105. Bikondoa O, Pang CL, Ithnin R et al (2006) Direct visualization of defect-mediated dissociation of water on TiO2(110). Nat Mater 5:189–192

    Article  CAS  Google Scholar 

  106. Wendt S, Sprunger PT, Lira E et al (2008) The role of interstitial sites in the Ti 3d defect state in the band gap of titania. Science 320:1755–1759

    Article  CAS  Google Scholar 

  107. Petrik NG, Zhang ZR, Du YG et al (2009) Chemical reactivity of reduced TiO2(110): the dominant role of surface defects in oxygen chemisorption. J Phys Chem C 113:12407–12411

    Article  CAS  Google Scholar 

  108. Lira E, Hansen JO, Huo P, Bechstein R et al (2010) Dissociative and molecular oxygen chemisorption channels on reduced rutile TiO2(110): an STM and TPD study. Surf Sci 604:1945–1960

    Article  CAS  Google Scholar 

  109. Papageorgiou AC, Beglitis NS, Pang CL et al (2010) Electron traps and their effect on the surface chemistry of TiO2 (110). Proc Natl Acad Sci U S A 107:2391–2396

    Article  Google Scholar 

  110. Kimmel GA, Petrik NG (2008) Tetraoxygen on reduced TiO2(110): oxygen adsorption and reactions with bridging oxygen vacancies. Phys Rev Lett 100:3937–3940

    Article  CAS  Google Scholar 

  111. Scheiber P, Riss A, Schmid M et al (2010) Observation and destruction of an elusive adsorbate with STM: O2/TiO2(110). Phys Rev Lett 105:5332–5337

    Article  CAS  Google Scholar 

  112. Wang ZT, Du YG, Dohnalek Z et al (2010) Direct observation of site-specific molecular chemisorption of O2 on TiO2(110). J Phys Chem Lett 1:3524–3529

    Article  CAS  Google Scholar 

  113. Tan S, Ji Y, Zhao Y et al (2011) Molecular oxygen adsorption behaviors on the rutile TiO2(110)-1 x 1 surface: an in situ study with low-temperature scanning tunneling microscopy. J Am Chem Soc 133:2002–2009

    Article  CAS  Google Scholar 

  114. Pillay D, Wang Y, Hwang GS (2006) Prediction of tetraoxygen formation on rutile TiO2(110). J Am Chem Soc 128:14000–14001

    Article  CAS  Google Scholar 

  115. Opel W, Rocker G, Feierabend R (1983) Intrinsic defects of TiO2(110)-interaction with chemisorbed O2, H2, CO, and CO2. Phys Rev B 28:3427–3438

    Article  Google Scholar 

  116. de Lara-Castells MP, Krause JL (2002) Theoretical study of the interaction of molecular oxygen with a reduced TiO2 surface. Chem Phys Lett 354:483–490

    Article  Google Scholar 

  117. Henrich VE, Dresselhaus G, Zeiger HJ (1978) Chemisorbed phase of O2 on TiO2 and SrTiO3. J Vac Sci Technol 15:534–537

    Article  CAS  Google Scholar 

  118. Wang Y, Pillay D, Hwang GS (2004) Dynamics of oxygen species on reduced TiO2(110) rutile. Phys Rev B 70:3352–3359

    Google Scholar 

  119. Henderson MA, Shen M, Wang ZT et al (2013) Characterization of the active surface species responsible for UV-induced desorption of O2 from the rutile TiO2(110) surface. J Phys Chem C 117:5774–5784

    Article  CAS  Google Scholar 

  120. Wu XY, Selloni A, Lazzeri M et al (2003) Oxygen vacancy mediated adsorption and reactions of molecular oxygen on the TiO2(110) surface. Phys Rev B 68:241402

    Article  CAS  Google Scholar 

  121. Filippone F, Mattioli G, Bonapasta AA (2007) Reaction intermediates and pathways in the photoreduction of oxygen molecules at the (101) TiO2 (anatase) surface. Catal Today 129:169–176

    Article  CAS  Google Scholar 

  122. Aschauer U, Chen J, Selloni A (2010) Peroxide and superoxide states of adsorbed O2 on anatase TiO2 (101) with subsurface defects. Phys Chem Chem Phys 12:12956–12960

    Article  CAS  Google Scholar 

  123. Zeng W, Liu TM, Wang ZC, Tsukimoto S et al (2010) Oxygen adsorption on anatase TiO2 (101) and (001) surfaces from first principles. Mater Trans 51:171–175

    Article  CAS  Google Scholar 

  124. Li YF, Selloni A (2013) Theoretical study of interfacial electron transfer from reduced anatase TiO2(101) to adsorbed O2. J Am Chem Soc 135:9195–9199

    Article  CAS  Google Scholar 

  125. Setvín M, Aschauer U, Scheiber P et al (2013) Reaction of O2 with subsurface oxygen vacancies on TiO2 anatase (101). Science 341:988–991

    Article  CAS  Google Scholar 

  126. Liu LL, Liu Q, Zheng YP et al (2014) O2 adsorption and dissociation on a hydrogenated anatase (101) aurface. J Phys Chem C 118:3471–3482

    Article  CAS  Google Scholar 

  127. Setvin M, Daniel B, Aschauer U et al (2014) Identification of adsorbed molecules via STM tip manipulation: CO, H2O, and O2 on TiO2 anatase (101). Phys Chem Chem Phys 16:21524–21530

    Article  CAS  Google Scholar 

  128. Zeng W, Liu T, Li T et al (2015) First principles study of oxygen adsorption on the anatase TiO2 (101) surface. Physica E 67:59–64

    Article  CAS  Google Scholar 

  129. He YB, Dulub O, Cheng HZ et al (2009) Evidence for the Predominance of Subsurface Defects on Reduced Anatase TiO2 (101). Phys Rev Lett 102:106105

    Article  CAS  Google Scholar 

  130. Wang Y, Sun H, Tan S et al (2013) Role of point defects on the reactivity of reconstructed anatase titanium dioxide (001) surface. Nat Commun 4:375–381

    Google Scholar 

  131. Lu G, Linsebigler A, Yates JT (1995) The photochemical identification of 2 chemisorption states for molecular oxygen on TiO2(110). J Chem Phys 102:3005–3008

    Article  CAS  Google Scholar 

  132. Lu GQ, Linsebigler A, Yates JT (1995) The adsorption and photodesorption of oxygen on the TiO2(110) surface. J Chem Phys 102:4657–4662

    Article  CAS  Google Scholar 

  133. Rusu CN, Yates JT (1997) Defect sites on TiO2(110). Detection by O2 photodesorption. Langmuir 13:4311–4316

    Article  CAS  Google Scholar 

  134. Perkins CL, Henderson MA (2001) Photodesorption and trapping of molecular oxygen at the TiO2(110)-water ice interface. J Phys Chem B 105:3856–3863

    Article  CAS  Google Scholar 

  135. Thompson TL, Yates JT (2006) Control of a surface photochemical process by fractal electron transport across the surface: O2 photodesorption from TiO2(110). J Phys Chem B 110:7431–7435

    Article  CAS  Google Scholar 

  136. Petrik NG, Kimmel GA (2010) Photoinduced dissociation of O2 on rutile TiO2(110). J Phys Chem Lett 1:1758–1762

    Article  CAS  Google Scholar 

  137. Petrik NG, Kimmel GA (2011) Oxygen photochemistry on TiO2(110): recyclable, photoactive oxygen produced by annealing adsorbed O2. J Phys Chem Lett 2:2790–2796

    Article  CAS  Google Scholar 

  138. Petrik NG, Kimmel GA (2011) Electron- and hole-mediated reactions in UV-irradiated O2 adsorbed on reduced rutile TiO2(110). J Phys Chem C 115:152–164

    Article  CAS  Google Scholar 

  139. Wang ZT, Aaron Deskins N, Lyubinetsky I (2012) Direct imaging of site-specific photocatalytical reactions of O2 on TiO2(110). J Phys Chem Lett 3:102–106

    Article  CAS  Google Scholar 

  140. Petrik NG, Kimmel GA (2014) Probing the photochemistry of chemisorbed oxygen on TiO2(110) with Kr and other coadsorbates. Phys Chem Chem Phys 16:2338–2346

    Article  CAS  Google Scholar 

  141. Thompson TL, Yates JT (2006) Surface science studies of the photoactivation of TiO2-new photochemical processes. Chem Rev 106:4428–4453

    Article  CAS  Google Scholar 

  142. Yates JT Jr (2009) Photochemistry on TiO2: mechanisms behind the surface chemistry. Surf Sci 603:1605–1612

    Article  CAS  Google Scholar 

  143. Thompson TL, Yates JT (2005) TiO2-based photocatalysis: surface defects, oxygen and charge transfer. Top Catal 35:197–210

    Article  CAS  Google Scholar 

  144. Epling WS, Peden CHF, Henderson MA et al (1998) Evidence for oxygen adatoms on TiO2(110) resulting from O2 dissociation at vacancy sites. Surf Sci 413:333–343

    Article  Google Scholar 

  145. Henderson MA, Otero-Tapia S, Castro ME (1999) The chemistry of methanol on the TiO2(110) surface: the influence of vacancies and coadsorbed species. Faraday Discuss 114:313–329

    Article  CAS  Google Scholar 

  146. Henderson MA, Otero-Tapia S, Castro ME (1998) Electron-induced decomposition of methanol on the vacuum-annealed surface of TiO2(110). Surf Sci 412/413:252–272

    Google Scholar 

  147. Shen MM, Henderson MA (2012) Role of water in methanol photochemistry on rutile TiO2(110). J Phys Chem C 116:18788–18795

    Google Scholar 

  148. Onda K, Li B, Zhao J et al (2005a) The electronic structure of methanol covered TiO2(110) surfaces. Surf Sci 593:32–37

    Google Scholar 

  149. Li B, Zhao J, Onda K et al (2006) Ultrafast interfacial proton-coupled electron transfer. Science 311:1436–1440

    Google Scholar 

  150. Onda K, Li B, Zhao J et al (2005b) Wet electrons at the H2O/TiO2(110) surface. Science 308:1154–1158

    Google Scholar 

  151. Zhang ZR, Bondarchuk O, White JM (2006) Imaging adsorbate O−H bond cleavage: methanol on TiO2(110). J Am Chem Soc 128:4198–4199

    Article  CAS  Google Scholar 

  152. Bates SP, Gillan MJ, Kresse G (1998) Adsorption of methanol on TiO2(110): a first-principles investigation. J Phys Chem B 102:2017–2026

    Article  CAS  Google Scholar 

  153. de Armas RS, Oviedo J, San Miguel MA et al (2007) Methanol adsorption and dissociation on TiO2(110) from first principles calculations. J Phys Chem C 111:10023–10028

    Google Scholar 

  154. Zhao J, Yang JL, Petek H (2009) Theoretical study of the molecular and electronic structure of methanol on a TiO2(110) surface. Phys Rev B 80:235416

    Article  CAS  Google Scholar 

  155. Zhou C, Ren ZF, Tan SJ et al (2010) Site-specific photocatalytic splitting of methanol on TiO2(110). Chem Sci 1:575–580

    Article  CAS  Google Scholar 

  156. Kawai T, Sakata T (1980) Photocatalytic hydrogen production from liquid methanol and water. J Chem Soc Chem Comm 15:694–695

    Article  Google Scholar 

  157. Palmisano G, Augugliaro V, Pagliaro M et al (2007) Photocatalysis: a promising route for 21st century organic chemistry. Chem Commun 33:3425–3437

    Article  CAS  Google Scholar 

  158. Muggli DS, Odland MJ, Schmidt LR (2001) Effect of trichloroethylene on the photocatalytic oxidation of methanol on TiO2. J Catal 203:51–63

    Article  CAS  Google Scholar 

  159. Chen X, Chen S, Guo L et al (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570

    Article  CAS  Google Scholar 

  160. Li Z, Smith RS, Kay BD et al (2011) Determination of absolute coverages for small aliphatic alcohols on TiO2(110). J Phys Chem C 115:22534–22539

    Article  CAS  Google Scholar 

  161. Shen MM, Acharya DP, Dohnálek Z et al (2012) Importance of diffusion in methanol photochemistry on TiO2(110). J Phys Chem C 116:25465–25469

    Article  CAS  Google Scholar 

  162. Zhou C, Ma Z, Ren Z (2012) Surface photochemistry probed by two-photon photoemission spectroscopy. Energy Environ Sci 5:6833–6844

    Article  CAS  Google Scholar 

  163. Cui XF, Wang Z, Tan SJ (2009) Identifying hydroxyls on the TiO2(110)−1 × 1 surface with scanning tunneling microscopy. J Phys Chem C 113:13204–13208

    Article  CAS  Google Scholar 

  164. Klymko PW, Kopelman R (1983) Fractal reaction kinetics: exciton fusion on clusters. J Phys Chem 87:4565–4567

    Article  CAS  Google Scholar 

  165. Kopelman R (1988) Fractal reaction kinetics. Science 241:1620–1626

    Article  CAS  Google Scholar 

  166. Zhou C, Ma Z, Ren Z et al (2011) Effect of defects on photocatalytic dissociation of methanol on TiO2(110). Chem Sci 2:1980–1983

    Article  CAS  Google Scholar 

  167. Haubrich J, Kaxiras E, Friend CM (2011) The role of surface and subsurface point defects for chemical model studies on TiO2: a firstprinciples theoretical study of formaldehyde bonding on rutile TiO2(110). Chem Eur J 17:4496–4506

    Article  CAS  Google Scholar 

  168. Zuo F, Wang L, Wu T (2010) Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J Am Chem Soc 132:11856–11857

    Article  CAS  Google Scholar 

  169. Shen MM, Henderson MA (2011a) Identification of the active species in photochemical hole scavenging reactions of methanol on TiO2. J Phys Chem Lett 2:2707–2710

    Article  CAS  Google Scholar 

  170. Shen MM, Henderson MA (2011b) Impact of solvent on photocatalytic mechanisms: reactions of photodesorption products with ice overlayers on the TiO2(110) surface. J Phys Chem C 115:5886–5893

    Article  CAS  Google Scholar 

  171. Guo Q, Xu C, Ren Z et al (2012) Stepwise photocatalytic dissociation of methanol and water on TiO2(110). J Am Chem Soc 134:13366–13373

    Article  CAS  Google Scholar 

  172. Lane CD, Petrik NG, Orlando TM et al (2007) Electron-stimulated oxidation of thin water films adsorbed on TiO2(110). J Phys Chem C 111:16319–16329

    Article  CAS  Google Scholar 

  173. Lang X, Wen B, Zhou C et al (2014) First-principles study of methanol oxidation into methyl formate on rutile TiO2(110). J Phys Chem C 118:19859–19868

    Article  CAS  Google Scholar 

  174. Petrik NG, Kimmel GA (2009) Nonthermal water splitting on rutile TiO2: electron-stimulated production of H2 and O2 in amorphous solid water films on TiO2(110). J Phys Chem C 113:4451–4460

    Article  CAS  Google Scholar 

  175. Mao X, Wei D, Wang Z et al (2015a) Recombination of formaldehyde and hydrogen atoms on TiO2(110). J Phys Chem C 119:1170–1174

    Article  CAS  Google Scholar 

  176. Mao X, Lang X, Wang Z et al (2013) Band-gap states of TiO2(110): major contribution from surface defects. J Phys Chem Lett 4:3839–3844

    Article  CAS  Google Scholar 

  177. Guo Q, Xu C, Yang W et al (2013) Methyl formate production on TiO2(110), initiated by methanol photocatalysis at 400 nm. J Phys Chem C 117:5293–5300

    Article  CAS  Google Scholar 

  178. Phillips KR, Jensen SC, Baron M et al (2013) Sequential photo-oxidation of methanol to methyl formate on TiO2(110). J Am Chem Soc 135:574–577

    Article  CAS  Google Scholar 

  179. Yuan Q, Wu Z, Jin Y et al (2013) Photocatalytic cross-coupling of methanol and formaldehyde on a rutile TiO2(110) surface. J Am Chem Soc 135:5212–5219

    Article  CAS  Google Scholar 

  180. Domokos L, Katona T, Molnar A (1996) Dehydrogenation of methanol to methyl formate: deuterium labeling studies. Catal Lett 40:215–221

    Article  CAS  Google Scholar 

  181. Liu JL, Zhan ES, Cai WJ et al (2008) Methanol selective oxidation to methyl formate over ReOx/CeO2 catalysts. Catal Lett 120:274–280

    Article  CAS  Google Scholar 

  182. Minyukova TP, Simentsova II, Khasin AV et al (2002) Dehydrogenation of methanol over copper-containing catalysts. Appl Catal A Gen 237:171–180

    Article  CAS  Google Scholar 

  183. Mao X, Wang Z, Lang X et al (2015b) Effect of surface structure on the photoreactivity of TiO2. J Phys Chem C 119:6121–6127

    Article  CAS  Google Scholar 

  184. Ohno T, Sarukawa K, Matsumura M (2002) Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New J Chem 26:1167–1170

    Article  CAS  Google Scholar 

  185. Tao JG, Batzill M (2010) Role of surface structure on the charge trapping in TiO2 photocatalysts. J Phys Chem Lett 1:3200–3206

    Article  CAS  Google Scholar 

  186. Xu C, Yang W, Guo Q et al (2013a) Molecular hydrogen formation from photocatalysis of methanol on TiO2(110). J Am Chem Soc 135:10206–10209

    Article  CAS  Google Scholar 

  187. Xu C, Yang W, Ren Z et al (2013b) Strong photon energy dependence of the photocatalytic dissociation rate of methanol on TiO2(110). J Am Chem Soc 135:19039–19045

    Article  CAS  Google Scholar 

  188. Kavan L, Gratzel M, Gilbert SE et al (1996) Electrochemical and photoelectrochemical investigation of single-crystal anatase. J Am Chem Soc 118:6716–6723

    Article  CAS  Google Scholar 

  189. Herman GS, Dohnalek Z, Ruzycki N et al (2003) Experimental investigation of the interaction of water and methanol with anatase−TiO2(101). J Phys Chem B 107:2788–2795

    Article  CAS  Google Scholar 

  190. Xu C, Yang W, Guo Q et al (2014) Molecular hydrogen formation from photocatalysis of methanol on anatase-TiO2(101). J Am Chem Soc 136:602–605

    Article  CAS  Google Scholar 

  191. Tilocca A, Selloni A (2004) Methanol adsorption and reactivity on clean and hydroxylated snatase(101) surfaces. J Phys Chem B 108:19314–19319

    Article  CAS  Google Scholar 

  192. Guo Q, Minton TK, Yang X (2015) Elementary processes in photocatalysis of methanol and water on rutile TiO2(110): a new picture of photocatalysis. Chin J Catal. doi:10.1016/S1872-2067(15)60935-4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueming Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guo, Q., Zhou, C., Ma, Z., Ren, Z., Fan, H., Yang, X. (2016). Fundamental Processes in Surface Photocatalysis on TiO2 . In: Colmenares, J., Xu, YJ. (eds) Heterogeneous Photocatalysis. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48719-8_11

Download citation

Publish with us

Policies and ethics