Skip to main content

Photocatalytic CO2 Reduction

  • Chapter
  • First Online:
Heterogeneous Photocatalysis

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

In the context of finding sustainable and environmentally neutral alternatives to fossil fuels, there is much current interest in the production of chemicals that can be used as fuels using solar light (solar fuels). In the present chapter, we describe the fundamentals and the current state of the art for the photocatalytic reduction of CO2, making emphasis on the importance of the co-substrate (either water, hydrogen, or other electron donors), the differences of the process with respect to the photocatalytic hydrogen generation from water, and the importance to control the selectivity towards a single product of the many possible ones. After this part describing some basic issues of the photocatalytic CO2 reduction, some of the currently more efficient photocatalysts are described, delineating similarities and differences among those materials. The final section summarizes the main points of the chapter and presents our view on future developments in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gust D, Moore TA, Moore AL (2001) Mimicking photosynthetic solar energy transduction. Acc Chem Res 34:40–48

    Article  CAS  Google Scholar 

  2. Heller A (1981) Conversion of sunlight into electrical power and photoassisted electrolysis of water in photoelectrochemical cells. Acc Chem Res 14:154–162

    Article  CAS  Google Scholar 

  3. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502

    Article  CAS  Google Scholar 

  4. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci 103:15729–15735

    Article  CAS  Google Scholar 

  5. Alstrum-Acevedo JH, Brennaman MK, Meyer TJ (2005) Chemical approaches to artificial photosynthesis. 2. Inorg Chem 44:6802–6827

    Article  CAS  Google Scholar 

  6. Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, Junge W, Kramer DM, Melis A, Moore TA, Moser CC, Nocera DG, Nozik AJ, Ort DR, Parson WW, Prince RC, Sayre RT (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809

    Article  CAS  Google Scholar 

  7. Corma A, dela Torre O, Renz M, Villandier N, Renz M, Villandier N (2011) Production of high-quality diesel from biomass waste products. Angew Chem Int Ed 50:2375–2378

    Article  CAS  Google Scholar 

  8. U S D o Energy (2013) Energy efficiency & renewable energy, hydrogen delivery. Available online:http://www1.eere.energy.gov/hydrogenandfuelcells/delivey/. Accessed 30 Nov 2013

  9. Balzani V, Credi A, Venturi M (2008) Photochemical conversion of solar energy. Chem Sus Chem 1:26–58

    Article  CAS  Google Scholar 

  10. Gust D, Moore TA, Moore AL (2009) Solar fuels via artificial photosynthesis. Acc Chem Res 42:1890–1898

    Article  CAS  Google Scholar 

  11. Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1:763–784

    Article  CAS  Google Scholar 

  12. Corma A, Garcia H (2013) Photocatalytic reduction of CO2 for fuel production: possibilities and challenges. J Catal 308:168–175

    Article  CAS  Google Scholar 

  13. de_Richter RK, Ming T, Caillol S (2013) Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors. Renew Sust Energ Rev 19:82–106

    Article  CAS  Google Scholar 

  14. Morris AJ, Meyer GJ, Fujita E (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res 42:1983–1994

    Article  CAS  Google Scholar 

  15. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed 52:7372–7408

    Article  CAS  Google Scholar 

  16. Huber GW, Corma A (2007) Synergies between bio- and oil refineries for the production of fuels from biomass. Angew Chem Int Ed 46:7184–7201

    Article  CAS  Google Scholar 

  17. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  CAS  Google Scholar 

  18. Barber J (2009) Photosynthetic energy conversion: natural and artificial. Chem Soc Rev 38:185–196

    Article  CAS  Google Scholar 

  19. Lunde PJ (1974) Modeling, simulation, and operation of a Sabatier reactor. Ind Eng Chem Process Des Dev 13:226–233

    Article  CAS  Google Scholar 

  20. Agrell J, Birgersson H, Boutonnet M (2002) Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation. J Power Sources 106:249–257

    Article  CAS  Google Scholar 

  21. Trimm DL, Önsan ZI (2001) Onboard fuel conversion for hydrogen-fuel-cell-driven vehicles. Catal Rev 43:31–84

    Article  CAS  Google Scholar 

  22. Zhang H, Shen PK (2012) Recent development of polymer electrolyte membranes for fuel cells. Chem Rev 112:2780–2832

    Article  CAS  Google Scholar 

  23. Roy SC, Varghese OK, Paulose M, Grimes CA (2010) Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4:1259–1278

    Article  CAS  Google Scholar 

  24. Indrakanti VP, Kubicki JD, Schobert HH (2009) Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook. Energy Environ Sci 2:745–758

    Article  CAS  Google Scholar 

  25. Varghese OK, Paulose M, LaTempa TJ, Grimes CA (2009) High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett 9:731–737

    Article  CAS  Google Scholar 

  26. Neaţu Ş, Maciá-Agulló JA, Concepción P, Garcia H (2014) Gold–copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J Am Chem Soc 136:15969–15976

    Article  CAS  Google Scholar 

  27. Baldoví HG, Neaţu Ş, Khan A, Asiri AM, Kosa SA, Garcia H (2015) Understanding the origin of the photocatalytic CO2 reduction by Au- and Cu-loaded TiO2: a microsecond transient absorption spectroscopy study. J Phy Chem C 119:6819–6827

    Article  CAS  Google Scholar 

  28. Chen Z, Chen C, Weinberg DR, Kang P, Concepcion JJ, Harrison DP, Brookhart MS, Meyer TJ (2011) Electrocatalytic reduction of CO2 to CO by polypyridyl ruthenium complexes. Chem Commun 47:12607–12609

    Article  CAS  Google Scholar 

  29. Wang C, Xie Z, deKrafft KE, Lin W (2011) Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J Am Chem Soc 133:13445–13454

    Article  CAS  Google Scholar 

  30. Sastre F, Puga AV, Liu L, Corma A, García H (2014) Complete photocatalytic reduction of CO2 to methane by H2 under solar light irradiation. J Am Chem Soc 136:6798–6801

    Article  CAS  Google Scholar 

  31. Ozin GA (2015) Throwing new light on the reduction of CO2. Adv Mater 27:1957–1963

    Article  CAS  Google Scholar 

  32. Schlögl R (2015) The revolution continues: energiewende 2.0. Angew Chem Int Ed 54:4436–4439

    Article  CAS  Google Scholar 

  33. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  34. Abad A, Concepción P, Corma A, García H (2005) A collaborative effect between gold and a support induces the selective oxidation of alcohols. Angew Chem Int Ed 44:4066–4069

    Article  CAS  Google Scholar 

  35. Yan S, Wan L, Li Z, Zou Z (2011) Facile temperature-controlled synthesis of hexagonal Zn2GeO4 nanorods with different aspect ratios toward improved photocatalytic activity for overall water splitting and photoreduction of CO2. Chem Commun 47:5632–5634

    Article  CAS  Google Scholar 

  36. Slamet HWN, Purnama E, Kosela S, Gunlazuardi J (2005) Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method. Catal Commun 6:313–319

    Article  CAS  Google Scholar 

  37. Ishitani O (1993) Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2. J Photochem Photobiol A: Chem 72:269–271

    Article  CAS  Google Scholar 

  38. Pan J, Wu X, Wang L, Liu G, Lu GQ, Cheng H-M (2011) Synthesis of anatase TiO2 rods with dominant reactive {010} facets for the photoreduction of CO2 to CH4 and use in dye-sensitized solar cells. Chem Commun 47:8361–8363

    Article  CAS  Google Scholar 

  39. Tsai C-W, Chen HM, Liu R-S, Asakura K, Chan T-S (2011) Ni@NiO core–shell structure-modified nitrogen-doped InTaO4 for solar-driven highly efficient CO2 reduction to methanol. J Phys Chem C 115:10180–10186

    Article  CAS  Google Scholar 

  40. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  41. Navalón S, Dhakshinamoorthy A, Álvaro M, Garcia H (2013) Photocatalytic CO2 reduction using non-titanium metal oxides and sulfides. ChemSusChem 6:562–577

    Article  CAS  Google Scholar 

  42. Katsumata K-i, Sakai K, Ikeda K, Carja G, Matsushita N, Okada K (2013) Preparation and photocatalytic reduction of CO2 on noble metal (Pt, Pd, Au) loaded Zn–Cr layered double hydroxides. Mater Lett 107:138–140

    Article  CAS  Google Scholar 

  43. Iguchi S, Teramura K, Hosokawa S, Tanaka T (2015) Photocatalytic conversion of CO2 in an aqueous solution using various kinds of layered double hydroxides. Catal Today 251:140–144

    Article  CAS  Google Scholar 

  44. Teramura K, Iguchi S, Mizuno Y, Shishido T, Tanaka T (2012) Photocatalytic conversion of CO2 in water over layered double hydroxides. Angew Chem Int Ed 51:8008–8011

    Article  CAS  Google Scholar 

  45. Morikawa M, Ogura Y, Ahmed N, Kawamura S, Mikami G, Okamoto S, Izumi Y (2014) Photocatalytic conversion of carbon dioxide into methanol in reverse fuel cells with tungsten oxide and layered double hydroxide photocatalysts for solar fuel generation. Catal Sci Technol 4:1644–1651

    Article  CAS  Google Scholar 

  46. Tu W, Zhou Y, Zou Z (2013) Versatile graphene-promoting photocatalytic performance of semiconductors: basic principles, synthesis, solar energy conversion, and environmental applications. Adv Funct Mater 23:4996–5008

    Article  CAS  Google Scholar 

  47. Liang YT, Vijayan BK, Gray KA, Hersam MC (2011) Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano Lett 11:2865–2870

    Article  CAS  Google Scholar 

  48. Latorre-Sánchez M, Lavorato C, Puche M, Fornés V, Molinari R, Garcia H (2012) Visible-light photocatalytic hydrogen generation by using dye-sensitized graphene oxide as a photocatalyst. Chem Eur J 18:16774–16783

    Article  CAS  Google Scholar 

  49. Yadav RK, Baeg J-O, Oh GH, Park N-J, Kong K-j, Kim J, Hwang DW, Biswas SK (2012) A photocatalyst–enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2. J Am Chem Soc 134:11455–11461

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2012-32315) and Generalitat Valenciana (Prometeo 2013/2014) is gratefully acknowledged. J.A. thanks the Spanish Ministry of Economy and Competitiveness for the Severo Ochoa research associate contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermenegildo García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Albero, J., García, H. (2016). Photocatalytic CO2 Reduction. In: Colmenares, J., Xu, YJ. (eds) Heterogeneous Photocatalysis. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48719-8_1

Download citation

Publish with us

Policies and ethics