Skip to main content

Equilibrium Properties

  • Chapter
  • First Online:
  • 773 Accesses

Abstract

This chapter presents the statistical-mechanical treatments of equilibrium conformational or static properties, such as the mean-square radius of gyration, scattering function, mean-square optical anisotropy, and mean-square electric dipole moment, of the unperturbed HW chain, including the KP wormlike chain as a special case, by an application of its chain statistics developed in Chap. 4 A comparison of theory with experiment is made with experimental data obtained for several flexible polymers in the \(\varTheta\) state over a wide range of molecular weight, including the oligomer region, and also for typical semiflexible polymers (without excluded volume) in some cases. It must be noted that well-characterized samples have recently been used for measurements of dilute-solution properties of the former; they are sufficiently narrow in molecular weight distribution, and have a fixed stereochemical composition independent of the molecular weight in the case of asymmetric polymers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T. Konishi, T. Yoshizaki, T. Saito, Y. Einaga, H. Yamakawa, Macromolecules 23, 290 (1990)

    Article  CAS  Google Scholar 

  2. T. Konishi, T. Yoshizaki, H. Yamakawa, Macromolecules 24, 5614 (1991)

    Article  CAS  Google Scholar 

  3. M. Osa, T. Yoshizaki, H. Yamakawa, Macromolecules 33, 4828 (2000)

    Article  CAS  Google Scholar 

  4. Y. Tamai, T. Konishi, Y. Einaga, M. Fujii, H. Yamakawa, Macromolecules 23, 4067 (1990)

    Article  CAS  Google Scholar 

  5. M. Kamijo, N. Sawatari, T. Konishi, T. Yoshizaki, H. Yamakawa, Macromolecules 27, 5697 (1994)

    Article  CAS  Google Scholar 

  6. M.R. Ambler, D. McIntyre, L.J. Fetters, Macromolecules 11, 300 (1978)

    Article  CAS  Google Scholar 

  7. J.E. Godfrey, H. Eisenberg, Biophys. Chem. 5, 301 (1976)

    Article  CAS  Google Scholar 

  8. Y. Kashiwagi, T. Norisuye, H. Fujita, Macromolecules 14, 1220 (1981)

    Article  CAS  Google Scholar 

  9. T. Norisuye, Prog. Polym. Sci. 18, 543 (1993)

    Article  CAS  Google Scholar 

  10. T.C. Troxell, H.A. Scheraga, Macromolecules 4, 528 (1971)

    Article  CAS  Google Scholar 

  11. U. Schmueli, W. Traub, K. Rosenheck, J. Polym. Sci. Part A-2 7, 515 (1969)

    Google Scholar 

  12. T. Yoshizaki, H. Yamakawa, Macromolecules 13, 1518 (1980)

    Article  CAS  Google Scholar 

  13. P. Debye, J. Phys. Coll. Chem. 51, 18 (1947)

    Article  CAS  Google Scholar 

  14. T. Neugebauer, Ann. Phys. 42, 509 (1943)

    Article  CAS  Google Scholar 

  15. J. des Cloizeaux, Macromolecules 6, 403 (1973)

    Google Scholar 

  16. M. Fujii, H. Yamakawa, J. Chem. Phys. 66, 2578 (1977)

    Article  CAS  Google Scholar 

  17. A. Peterlin, J. Polym. Sci. 47, 403 (1960)

    Article  CAS  Google Scholar 

  18. S. Heine, O. Kratky, G. Porod, P.J. Schmitz, Makromol. Chem. 44, 682 (1961)

    Article  Google Scholar 

  19. R. Koyama, J. Phys. Soc. Jpn. 34, 1029 (1973)

    Article  CAS  Google Scholar 

  20. P. Sharp, V.A. Bloomfield, Biopolymers 6, 1201 (1968)

    Article  CAS  Google Scholar 

  21. H. Yamakawa, M. Fujii, Macromolecules 7, 649 (1974)

    Article  CAS  Google Scholar 

  22. T. Norisuye, H. Murakami, H. Fujita, Macromolecules 11, 966 (1978)

    Article  CAS  Google Scholar 

  23. R.G. Kirste, W. Wunderlich, Makromol. Chem. 73, 240 (1964)

    Article  CAS  Google Scholar 

  24. W. Wunderlich, R.G. Kirste, Ber. Bunsen-Ges. Phys. Chem. 68, 646 (1964)

    Article  CAS  Google Scholar 

  25. R.G. Kirste, R.C. Oberthür, in Small Angle X-ray Scattering, ed. by O. Glatter, O. Kratky (Academic, New York, 1982), p. 387

    Google Scholar 

  26. D.Y. Yoon, P.J. Flory, Macromolecules 9, 299 (1976)

    Article  CAS  Google Scholar 

  27. P.R. Sundararajan, Macromolecules 19, 415 (1986)

    Article  CAS  Google Scholar 

  28. K. Nagasaka, T. Yoshizaki, J. Shimada, H. Yamakawa, Macromolecules 24, 924 (1991)

    Article  CAS  Google Scholar 

  29. A. Baram, W.M. Gelbart, J. Chem. Phys. 66, 617 (1977)

    Article  CAS  Google Scholar 

  30. R. Tsubouchi, D. Ida, T. Yoshizaki, H. Yamakawa, Macromolecules 47, 1449 (2014)

    Article  CAS  Google Scholar 

  31. G. Porod, in Small Angle X-ray Scattering, ed. by O. Glatter, O. Kratky (Academic, New York, 1982), p. 17

    Google Scholar 

  32. W. Burchard, K. Kajiwara, Proc. R. Soc. Lond. A316, 185 (1970)

    Article  Google Scholar 

  33. H. Koyama, T. Yoshizaki, Y. Einaga, H. Hayashi, H. Yamakawa, Macromolecules 24, 932 (1991)

    Article  CAS  Google Scholar 

  34. Y. Ohgaru, M. Sumida, M. Osa, T. Yoshizaki, H. Yamakawa, Macromolecules 33, 9316 (2000)

    Article  CAS  Google Scholar 

  35. T. Yoshizaki, H. Hayashi, H. Yamakawa, Macromolecules 26, 4037 (1993)

    Article  CAS  Google Scholar 

  36. K. Horita, T. Yoshizaki, H. Hayashi, H. Yamakawa, Macromolecules 27, 6492 (1994)

    Article  CAS  Google Scholar 

  37. T. Yoshizaki, H. Hayashi, H. Yamakawa, Macromolecules 27, 4259 (1994)

    Article  CAS  Google Scholar 

  38. K. Huber, W. Burchard, S. Bantle, Polymer 28, 863 (1987)

    Article  CAS  Google Scholar 

  39. A. Dettenmaier, A. Maconnachie, J.S. Higgins, H.H. Kausch, T.Q. Nguyen, Macromolecules 19, 773 (1986)

    Article  CAS  Google Scholar 

  40. J.M. O’Reilly, D.M. Teegarden, G.D. Wignall, Macromolecules 18, 2747 (1985)

    Article  Google Scholar 

  41. M. Vacatello, D.Y. Yoon, P.J. Flory, Macromolecules 23, 1993 (1990)

    Article  CAS  Google Scholar 

  42. W. Burchard, M. Schmidt, Polymer 21, 745 (1980)

    Article  CAS  Google Scholar 

  43. E.F. Casassa, J. Polym. Sci. Part A 3, 605 (1965)

    CAS  Google Scholar 

  44. J.W. Alexander, Trans. Am. Math. Soc. 30, 275 (1928)

    Article  Google Scholar 

  45. C.C. Adams, The Knot Book (Freeman, New York, 1994)

    Google Scholar 

  46. A.V. Vologodskii, A.V. Lukashin, M.D. Frank-Kamenetskii, V.V. Anshelevich, Zh. Eksp. Teor. Fiz. 66, 2153 (1974) [Soviet Phys. JETP 39, 1059 (1974)]

    Google Scholar 

  47. G. Hadziioannou, P.M. Cotts, G. ten Brinke, C.C. Han, P. Lutz, C. Strazielle, P. Rempp, A.J. Kovacs, Macromolecules 20, 493 (1987)

    Article  CAS  Google Scholar 

  48. H. Yamakawa, M. Fujii, J. Shimada, J. Chem. Phys. 71, 1611 (1979)

    Article  CAS  Google Scholar 

  49. B.J. Berne, R. Pecora, Dynamic Light Scattering (Interscience, New York, 1976)

    Google Scholar 

  50. K. Nagai, Polym. J. 3, 563 (1972)

    Article  CAS  Google Scholar 

  51. P. Horn, Ann. Phys. (Paris) 10, 386 (1955)

    CAS  Google Scholar 

  52. H. Utiyama, M. Kurata, Bull. Inst. Chem. Res. Kyoto Univ. 42, 128 (1964); H. Utiyama, J. Phys. Chem. 69, 4138 (1965)

    Google Scholar 

  53. Y. Tagami, J. Chem. Phys. 54, 4990 (1971)

    Article  CAS  Google Scholar 

  54. P. Horn, H. Benoit, G. Oster, J. Chim. Phys. 48, 530 (1951)

    CAS  Google Scholar 

  55. K. Nagai, Polym. J. 3, 67 (1972)

    Article  CAS  Google Scholar 

  56. M. Arpin, C. Strazielle, G. Weill, H. Benoit, Polymer 18, 262 (1977)

    Article  CAS  Google Scholar 

  57. P.J. Flory, P.R. Sundararajan, L.C. DeBold, J. Am. Chem. Soc. 96, 5015 (1974)

    Article  CAS  Google Scholar 

  58. G.D. Patterson, P.J. Flory, J. Chem. Soc. Faraday Trans. 2 68, 1098 (1972)

    Google Scholar 

  59. G.D. Patterson, P.J. Flory, J. Chem. Soc. Faraday Trans. 2 68, 1111 (1972)

    Google Scholar 

  60. U.W. Suter, P.J. Flory, J. Chem. Soc. Faraday Trans. 2 73,1521 (1977)

    Google Scholar 

  61. P.J. Flory, E. Saiz, B. Erman, P.A. Irvine, J.P. Hummel, J. Phys. Chem. 85, 3215 (1981)

    Article  CAS  Google Scholar 

  62. C.W. Carlson, P.J. Flory, J. Chem. Soc. Faraday Trans. 2 73, 1505 (1977)

    Google Scholar 

  63. D.Y. Yoon, P.J. Flory, Polymer 16, 645 (1975)

    Article  CAS  Google Scholar 

  64. T. Konishi, T. Yoshizaki, J. Shimada, H. Yamakawa, Macromolecules 22, 1921 (1989)

    Article  CAS  Google Scholar 

  65. Y. Takaeda, T. Yoshizaki, H. Yamakawa, Macromolecules 26, 3742 (1993)

    Article  CAS  Google Scholar 

  66. H. Kojo, M. Osa, T. Yoshizaki, H. Yamakawa, Macromolecules 36, 6570 (2003)

    Article  CAS  Google Scholar 

  67. Y. Takaeda, T. Yoshizaki, H. Yamakawa, Macromolecules 28, 4167 (1995)

    Article  CAS  Google Scholar 

  68. M. Nakatsuji, Y. Ogata, M. Osa, T. Yoshizaki, H. Yamakawa, Macromolecules 34, 8512 (2001)

    Article  CAS  Google Scholar 

  69. M. Fujii, H. Yamakawa, J. Chem. Phys. 72, 6005 (1980)

    Article  CAS  Google Scholar 

  70. H. Yamakawa, J. Shimada, K. Nagasaka, J. Chem. Phys. 71, 3573 (1979)

    Article  CAS  Google Scholar 

  71. A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1974)

    Google Scholar 

  72. W.H. Stockmayer, Pure Appl. Chem. 15, 539 (1967)

    Article  Google Scholar 

  73. T. Yamada, T. Yoshizaki, H. Yamakawa, Macromolecules 25, 1487 (1992)

    Article  CAS  Google Scholar 

  74. A.J. Bur, D.E. Roberts, J. Chem. Phys. 51, 406 (1969)

    Article  CAS  Google Scholar 

  75. S. Takada, T. Itou, H. Chikiri, Y. Einaga, A. Teramoto, Macromolecules 22, 973 (1989)

    Article  CAS  Google Scholar 

  76. H. Ando, T. Yoshizaki, A. Aoki, H. Yamakawa, Macromolecules 30, 6199 (1997)

    Article  CAS  Google Scholar 

  77. M. Vacatello, P.J. Flory, Macromolecules 19, 405 (1986)

    Article  CAS  Google Scholar 

  78. K. Nagai, T. Ishikawa, J. Chem. Phys. 43, 4508 (1965)

    Article  CAS  Google Scholar 

  79. P.J. Flory, Statistical Mechanics of Chain Molecules (Interscience, New York, 1969)

    Google Scholar 

  80. H. Benoit, Ann. Phys. (Paris) 6, 561 (1951)

    CAS  Google Scholar 

  81. A. Peterlin, H.A. Stuart, J. Polym. Sci. 5, 551 (1950)

    Article  Google Scholar 

  82. W.H. Stockmayer, M.E. Baur, J. Am. Chem. Soc. 86, 3485 (1964)

    Article  CAS  Google Scholar 

  83. J.A. Schellman, Chem. Rev. 75, 323 (1975)

    Article  CAS  Google Scholar 

  84. H. Yamakawa, Modern Theory of Polymer Solutions (Harper & Row, New York, 1971). Its electronic edition is available on-line at the URL, http://hdl.handle.net/2433/50527

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix 1: Chain-Thickness Correction for the Apparent Mean-Square Radius of Gyration

Fig. 5.22
figure 22

Double-logarithmic plots of \((k_{\mathrm{B}}T)^{2}A_{\mathrm{ED}}\) (in D2) against x for PBIC in CCl4 at room temperature [10]. The solid curve represents the best-fit KPA theoretical values calculated with the values of the model parameters given in Table 5.4 along with m 0 = 1. 25 D and ε 1 = 2. 60

The reciprocal of the excess reduced scattered intensity \(R_{\theta }\) for dilute solutions of mass concentration c may be expanded in the form [33, 84]

$$\displaystyle{ \frac{Kc} {R_{\theta }} = \frac{1} {MP_{\mathrm{s}}(k)} + 2A_{2}Q(k)c + \cdots \,, }$$
(5.205)

where K is the optical constant, M is the polymer molecular weight, P s(k) is the scattering function as a function of the magnitude k of the scattering vector k given by Eq. (5.20), A 2 is the second virial coefficient, and Q(k) represents the intermolecular interference. The function P s contains effects of the spatial distribution of scatterers (electrons or hydrogen nuclei), that is, effects of chain thickness in the case of small-angle X-ray or neutron scattering. In general, it may be written in the form [1]

$$\displaystyle{ P_{\mathrm{s}}(k;L) ={\biggl \langle{\biggl |\int \rho (\mathbf{r})\exp (i\mathbf{k} \cdot \mathbf{r})d\mathbf{r}\biggr |}^{2}\biggr \rangle}\,, }$$
(5.206)

where we have explicitly indicated that P s(k) also depends on the contour length L of the chain, \(\langle \cdots \,\rangle\) denotes an equilibrium average over chain conformations, i is the imaginary unit, and ρ(r) is the excess scatterer density at vector position r and is normalized as

$$\displaystyle{ \int \rho (\mathbf{r})d\mathbf{r} = 1\,. }$$
(5.207)

In the case for which the scatterers are distributed on the chain contour, ρ(r) is given by

$$\displaystyle{ \rho (\mathbf{r}) = L^{-1}\int _{ 0}^{L}\delta {\bigl [\mathbf{r} -\mathbf{r}(s)\bigr ]}ds\,, }$$
(5.208)

where \(\delta (\mathbf{r})\) is a three-dimensional Dirac delta function and r(s) is the radius vector of the contour point s (0 ≤ s ≤ L) of the chain. Then Eq. (5.206) with Eq. (5.208) gives the contour scattering function P(k; L) (without effects of chain thickness).

In the case of a cylinder model for which the scatterers are uniformly distributed within a (flexible) cylinder having a uniform cross section of area a c whose center of mass is on the chain contour, ρ(r) is given by

$$\displaystyle{ \rho (\mathbf{r}) = (La_{\mathrm{c}})^{-1}\int _{ 0}^{L}ds\int _{\mathrm{ C}_{S}}\delta [\mathbf{r} -\mathbf{r}(s) -\bar{\mathbf{r}}_{s}]d\bar{\mathbf{r}}_{s}\,, }$$
(5.209)

where \(\bar{\mathbf{r}}_{s}\) is the vector distance from the contour point s to an arbitrary point in the normal cross section at that point and the second integration is carried out over the cross section.

In the case of a touched-subbody model for which the scatterers are uniformly distributed in each of N identical touched subbodies of volume v s whose centers of mass are on the chain contour, ρ(r) is given by

$$\displaystyle{ \rho (\mathbf{r}) = (Nv_{\mathrm{s}})^{-1}\sum _{ j=1}^{N}\int _{ \mathrm{V}_{j}}\delta (\mathbf{r} -\mathbf{r}_{j} -\bar{\mathbf{r}}_{j})d\bar{\mathbf{r}}_{j}\,, }$$
(5.210)

where r j is the vector position of the center of mass of the jth subbody, \(\bar{\mathbf{r}}_{j}\) is the vector distance from r j to an arbitrary point within the jth subbody, and the integration is carried out within it.

The scattering function P s may be expanded in the form

$$\displaystyle{ P_{\mathrm{s}}(k;L) = 1 -\frac{1} {3}\langle S^{2}\rangle _{ \mathrm{s}}k^{2} + \mathcal{O}(k^{4})\,. }$$
(5.211)

This is the defining equation for the apparent mean-square radius of gyration \(\langle S^{2}\rangle _{\mathrm{s}}\) for the chain. It is related to the mean-square radius of gyration \(\langle S^{2}\rangle\) for the chain contour by the equation

$$\displaystyle{ \langle S^{2}\rangle _{ \mathrm{s}} =\langle S^{2}\rangle + S_{\mathrm{ c}}^{\ 2}\,, }$$
(5.212)

where S c is the radius of gyration for the cross section (cylinder model) or subbody (touched-subbody model) and is given by

$$\displaystyle\begin{array}{rcl} S_{\mathrm{c}}^{\ 2}& =& \frac{1} {8}d^{2}\ \ \ \mbox{ (cylinder)}\,,{}\end{array}$$
(5.213)
$$\displaystyle\begin{array}{rcl} S_{\mathrm{c}}^{\ 2}& =& \frac{3} {20}d_{\mathrm{b}}^{\ 2}\ \ \ \mbox{ (bead)}{}\end{array}$$
(5.214)

for the cylinder of diameter d and the sphere (bead) of diameter d b, respectively. For the cylinder model, d has been calculated to be 9.2, 8.2, and 8.1 Å for a-PS, a-PMMA, and i-PMMA, respectively, from the partial specific volume [1, 4, 5]. For a-PS, however, the value 9.4 Å of d has been adopted in Eq. (5.212) [1].

Appendix 2: Spherical Vectors and Tensors

The spherical (irreducible) components r (j) (j = 0, ± 1) of a vector r = (x, y, z) are defined in terms of the Cartesian components x, y, and z by [71]

$$\displaystyle\begin{array}{rcl} & & r^{(\pm 1)} = \mp \frac{1} {\sqrt{2}}(x \pm iy)\,, \\ & & r^{(0)} = z\,. {}\end{array}$$
(5.215)

The spherical components T l m (l = 0, 1, 2; m = 0, ± 1, ± 2) of a tensor \(\mathbf{T} = (T_{\mu \nu })\) (μ, ν = x, y, z) are defined in terms of the Cartesian components T μ ν by

$$\displaystyle\begin{array}{rcl} & & T_{0}^{0} = \frac{1} {\sqrt{3}}(T_{xx} + T_{yy} + T_{zz})\,, \\ & & T_{1}^{0} = \frac{1} {2}(T_{xy} - T_{yx})\,, \\ & & T_{1}^{\pm 1} = \mp \frac{1} {2\sqrt{2}}{\bigl [(T_{yz} - T_{zy}) \pm i(T_{zx} - T_{xz})\bigr ]}\,, \\ & & T_{2}^{0} = \frac{1} {\sqrt{6}}{\bigl [3T_{zz} - (T_{xx} + T_{yy} + T_{zz})\bigr ]}\,, \\ & & T_{2}^{\pm 1} = \mp \frac{1} {2}{\bigl [(T_{zx} + T_{xz}) \pm i(T_{zy} + T_{yz})\bigr ]}\,, \\ & & T_{2}^{\pm 2} = \frac{1} {2}{\bigl [(T_{xx} - T_{yy}) \pm i(T_{xy} + T_{yx})\bigr ]}\,.{}\end{array}$$
(5.216)

We note that the third and fifth of Eqs. (7.4.1) of [49] and all related equations are incorrect.

We have the symmetry relations

$$\displaystyle{ r^{(-j)} = (-1)^{j}r^{(j){\ast}}\,, }$$
(5.217)
$$\displaystyle{ T_{l}^{-m} = (-1)^{m}T_{ l}^{m{\ast}}\,, }$$
(5.218)

where the asterisk indicates the complex conjugate.

We have the same transformation rule as Eq. (4.264), that is,

$$\displaystyle{ \tilde{r}^{(j)} = c_{ 1}^{\ -1}\sum _{ j'=-1}^{1}\mathcal{D}_{ 1}^{jj'}(\Omega )r^{(j')}\,, }$$
(5.219)
$$\displaystyle{ \tilde{T}_{l}^{m} = c_{ l}^{\ -1}\sum _{ j=-l}^{l}\mathcal{D}_{ l}^{mj}(\Omega )T_{ l}^{j}\,, }$$
(5.220)

where the components \(\tilde{r}^{(j)}\) and \(\tilde{T}_{l}^{m}\) are transformed to the components r (j) and T l m, respectively, expressed in a new Cartesian coordinate system obtained by rotation \(\Omega \) of a coordinate system in which the former components are defined, \(\mathcal{D}_{l}^{mj}\) are the normalized Wigner \(\mathcal{D}\) functions, and c l is given by Eq. (4.54).

Appendix 3: Proof of Nagai’s Theorem

We introduce temporarily quantities β (±) defined by

$$\displaystyle{ \beta ^{(\pm )} =\alpha _{\mathrm{ Vh}} \pm \alpha _{\mathrm{Hv}}\,. }$$
(5.221)

We have \(\langle \tilde{\alpha }_{l_{1}}^{m_{1}},\tilde{\alpha }_{l_{ 2}}^{m_{2}}\rangle = 0\) for m 1m 2, as seen from Eq. (5.90), and therefore we obtain, from Eqs. (5.87) and (5.221), the relations,

$$\displaystyle\begin{array}{rcl} \langle \alpha _{\mathrm{Vv}},\beta ^{(+)}\rangle & =& \langle \alpha _{\mathrm{ Hh}},\beta ^{(+)}\rangle =\langle \beta ^{(-)},\beta ^{(+)}\rangle = 0\,, \\ \langle \beta ^{(+)},\alpha _{\mathrm{ Vv}}\rangle & =& \langle \beta ^{(+)},\alpha _{\mathrm{ Hh}}\rangle =\langle \beta ^{(+)},\beta ^{(-)}\rangle = 0\,,{}\end{array}$$
(5.222)

and also

$$\displaystyle\begin{array}{rcl} & & \langle \alpha _{\mathrm{Vv}},\beta ^{(-)}\rangle +\langle \beta ^{(-)},\alpha _{\mathrm{ Vv}}\rangle = 0\,, \\ & & \langle \alpha _{\mathrm{Hh}},\beta ^{(-)}\rangle +\langle \beta ^{(-)},\alpha _{\mathrm{ Hh}}\rangle = 0\,.{}\end{array}$$
(5.223)

We may express \(\langle \alpha _{\mathrm{fi}},\alpha _{\mathrm{fi}}\rangle\) in terms of its components \(\langle \alpha _{\mathrm{Vv}}\), \(\alpha _{\mathrm{Vv}}\rangle\) and so on by the use of Eq. (5.88) with β (+) and β (−) instead of \(\alpha _{\mathrm{Vh}}\) and \(\alpha _{\mathrm{Hv}}\). Then, if we use Eqs. (5.222) and (5.223) and change β (+) and β (−) back to \(\alpha _{\mathrm{Vh}}\) and \(\alpha _{\mathrm{Hv}}\), we find

$$\displaystyle\begin{array}{rcl} \langle \alpha _{\mathrm{fi}},\alpha _{\mathrm{fi}}\rangle & =& c_{\mathrm{i}}^{\ 2}c_{\mathrm{ f}}^{\ 2}\langle \alpha _{ \mathrm{Vv}},\alpha _{\mathrm{Vv}}\rangle + s_{\mathrm{i}}^{\ 2}s_{\mathrm{ f}}^{\ 2}\langle \alpha _{ \mathrm{Hh}},\alpha _{\mathrm{Hh}}\rangle + \frac{1} {2}(c_{\mathrm{i}}^{\ 2}s_{\mathrm{ f}}^{\ 2} + s_{\mathrm{ i}}^{\ 2}c_{\mathrm{ f}}^{\ 2}) \\ & & \times \bigl (\langle \alpha _{\mathrm{Vh}},\alpha _{\mathrm{Vh}}\rangle +\langle \alpha _{\mathrm{Hv}},\alpha _{\mathrm{Hv}}\rangle \bigr ) + c_{\mathrm{i}}s_{\mathrm{i}}c_{\mathrm{f}}s_{\mathrm{f}}\bigl (\langle \alpha _{\mathrm{Vv}},\alpha _{\mathrm{Hh}}\rangle \\ & & +\langle \alpha _{\mathrm{Hh}},\alpha _{\mathrm{Vv}}\rangle +\langle \alpha _{\mathrm{Vh}},\alpha _{\mathrm{Hv}}\rangle +\langle \alpha _{\mathrm{Hv}},\alpha _{\mathrm{Vh}}\rangle \bigr )\,. {}\end{array}$$
(5.224)

If we set \(\omega _{\mathrm{i}} = 0\) and \(\omega _{\mathrm{f}} =\pi /2\) in Eq. (5.224), we obtain the relation

$$\displaystyle{ \langle \alpha _{\mathrm{Vh}},\alpha _{\mathrm{Vh}}\rangle =\langle \alpha _{\mathrm{Hv}},\alpha _{\mathrm{Hv}}\rangle \,. }$$
(5.225)

If \(\omega _{\mathrm{i}'}\) and \(\omega _{\mathrm{f}'}\) are certain values of \(\omega _{\mathrm{i}}\) and \(\omega _{\mathrm{f}}\) for which the last term on the right-hand side of Eq. (5.224) does not vanish, this term may be expressed as a linear combination of \(\langle \alpha _{\mathrm{Vv}},\alpha _{\mathrm{Vv}}\rangle\), \(\langle \alpha _{\mathrm{Hv}},\alpha _{\mathrm{Hv}}\rangle\) (\(=\langle \alpha _{\mathrm{Vh}},\alpha _{\mathrm{Vh}}\rangle\)), \(\langle \alpha _{\mathrm{Hh}},\alpha _{\mathrm{Hh}}\rangle\), and \(\langle \alpha _{\mathrm{f}'\mathrm{i}'},\alpha _{\mathrm{f}'\mathrm{i}'}\rangle\). Therefore, it turns out that \(\langle \alpha _{\mathrm{fi}},\alpha _{\mathrm{fi}}\rangle\) for arbitrary \(\omega _{\mathrm{i}}\) and \(\omega _{\mathrm{f}}\) may be expressed as a linear combination of \(\langle \alpha _{\mathrm{Vv}},\alpha _{\mathrm{Vv}}\rangle\), \(\langle \alpha _{\mathrm{Hv}},\alpha _{\mathrm{Hv}}\rangle\), \(\langle \alpha _{\mathrm{Hh}},\alpha _{\mathrm{Hh}}\rangle\), and \(\langle \alpha _{\mathrm{f}'\mathrm{i}'},\alpha _{\mathrm{f}'\mathrm{i}'}\rangle\). Thus \(F_{\mathrm{fi}}\) may be expressed as a linear combination of \(F_{\mathrm{Vv}}\), \(F_{\mathrm{Hv}}\) (\(= F_{\mathrm{Vh}}\)), \(F_{\mathrm{Hh}}\), and \(F_{\mathrm{f}'\mathrm{i}'}\). If we choose as the fourth component \(F_{\mathrm{f}'\mathrm{i}'} = F_{\mathrm{Qq}}\) with \(\omega _{\mathrm{i}'} =\omega _{\mathrm{f}'} =\pi /4\), we obtain Eq. (5.91).

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yamakawa, H., Yoshizaki, T. (2016). Equilibrium Properties. In: Helical Wormlike Chains in Polymer Solutions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48716-7_5

Download citation

Publish with us

Policies and ethics