Neuronavigation im Kindesalter

  • U.-W. Thomale


Die Neuronavigation ist zu einer wichtigen Voraussetzung für viele kinderneurochirurgische Eingriffe geworden. Verschiedene Systeme, wie die optische oder elektromagnetische Navigation, sind verfügbar. Die Verbindung mit der intraoperativen Bildgebung wie dem MRT oder dem Ultraschall können den „Brain Shift“, der während der Operation auftreten kann, berücksichtigen und einen neuen Datensatz zur weiteren Navigation zur Verfügung stellen. Indikationen zum Einsatz der Navigation sind vielseitig und beinhalten z. B. die Platzierung von Ventrikelkathetern, neuroendoskopische Eingriffe, Tumorresektionen, Biopsien und die Epilepsiechirurgie.


  1. Acosta FL, Jr., Quinones-Hinojosa A, Gadkary CA et al. (2005) Frameless stereotactic image-guided C1–C2 transarticular screw fixation for atlantoaxial instability: review of 20 patients. J Spinal Disord Tech 18(5):385–391PubMedCrossRefGoogle Scholar
  2. Akdemir H, Oktem S, Menku A, Tucer B, Tugcu B, Gunaldi O (2007) Image-guided microneurosurgical management of small arteriovenous malformation: role of neuronavigation and intraoperative Doppler sonography. Minim Invasive Neurosurg 50(3):163–169PubMedCrossRefGoogle Scholar
  3. Al-Mefty O, Kadri PA, Hasan DM, Isolan GR, Pravdenkova S (2008) Anterior clivectomy: surgical technique and clinical applications. J Neurosurg 109(5):783–793PubMedCrossRefGoogle Scholar
  4. Almenawer SA, Crevier L, Murty N, Kassam A, Reddy K (2013) Minimal access to deep intracranial lesions using a serial dilatation technique: case-series and review of brain tubular retractor systems. Neurosurg Rev 36(2):321–329; discussion 329–330PubMedCrossRefGoogle Scholar
  5. Alotaibi N, Hanss J, Benoudiba F, Bobin S, Racy E (2013) Endoscopic removal of large orbito-ethmoidal osteoma in pediatric patient: Case report. Int J Surg Case Rep 4(12):1067–1070PubMedPubMedCentralCrossRefGoogle Scholar
  6. Avula S, Mallucci CL, Pizer B, Garlick D, Crooks D, Abernethy LJ (2012) Intraoperative 3-Tesla MRI in the management of paediatric cranial tumours – initial experience. Pediatr Radiol 42(2):158–167PubMedCrossRefGoogle Scholar
  7. Azeem SS, Origitano TC (2007) Ventricular catheter placement with a frameless neuronavigational system: a 1-year experience. Neurosurgery 60(4 Suppl 2): 243–247; discussion 247–248PubMedGoogle Scholar
  8. Barszcz S, Roszkowski M, Daszkiewicz P, Jurkiewicz E, Maryniak A (2007) Accuracy of intraoperative registration during electromagnetic neuronavigation in intracranial procedures performed in children. Neurol Neurochir Pol 41(2):122–127PubMedGoogle Scholar
  9. Benifla M, Sala F, Jr., Jane J et al. (2009) Neurosurgical management of intractable rolandic epilepsy in children: role of resection in eloquent cortex. Clinical article. J Neurosurg Pediatr 4(3):199–216PubMedCrossRefGoogle Scholar
  10. Cavalheiro S, Di Rocco C, Valenzuela S et al. (2010) Craniopharyngiomas: intratumoral chemotherapy with interferon-alpha: a multicenter preliminary study with 60 cases. Neurosurg Focus 28(4):E12PubMedCrossRefGoogle Scholar
  11. Centeno RS, Yacubian EM, Sakamoto AC, Ferraz AF, Junior HC, Cavalheiro S (2006) Pre-surgical evaluation and surgical treatment in children with extratemporal epilepsy. Childs Nerv Syst 22(8):945–959PubMedCrossRefGoogle Scholar
  12. Chandra PS, Padma VM, Shailesh G, Chandreshekar B, Sarkar C, Tripathi M (2008) Hemispherotomy for intractable epilepsy. Neurol India 56(2):127–132PubMedCrossRefGoogle Scholar
  13. Cho DY, Lee WY, Lee HC, Chen CC, Tso M (2005) Application of neuronavigator coupled with an operative microscope and electrocorticography in epilepsy surgery. Surg Neurol 64(5):411–417; discussion 417–418PubMedCrossRefGoogle Scholar
  14. Choi KY, Seo BR, Kim JH, Kim SH, Kim TS, Lee JK (2013) The usefulness of electromagnetic neuronavigation in the pediatric neuroendoscopic surgery. J Korean Neurosurg Soc 53(3):161–166PubMedPubMedCentralCrossRefGoogle Scholar
  15. Coburger J, Musahl C, Henkes H et al. (2013) Comparison of navigated transcranial magnetic stimulation and functional magnetic resonance imaging for preoperative mapping in rolandic tumor surgery. Neurosurg Rev 36(1):65–75; discussion 75–66PubMedCrossRefGoogle Scholar
  16. Coelho G, Kondageski C, Vaz-Guimaraes Filho F et al. (2011) Frameless image-guided neuroendoscopy training in real simulators. Minim Invasive Neurosurg 54(3):115–118PubMedCrossRefGoogle Scholar
  17. Dasenbrock HH, Clarke MJ, Bydon A et al. (2012) Endoscopic image-guided transcervical odontoidectomy: outcomes of 15 patients with basilar invagination. Neurosurgery 70(2):351–359; discussion 359–360PubMedCrossRefGoogle Scholar
  18. Di Rocco F, Oi S, Samii A et al. (2007) Neuronavigational endoscopic endonasal sellar and parasellar surgery using a 2-mm-diameter lens rigid-rod endoscope: a cadaver study. Neurosurgery 60(4 Suppl 2):394–400; discussion 400PubMedGoogle Scholar
  19. Di X (2007) Multiple brain tumor nodule resections under direct visualization of a neuronavigated endoscope. Minim Invasive Neurosurg 50(4):227–232PubMedCrossRefGoogle Scholar
  20. Enchev YP, Popov RV, Romansky KV, Marinov MB, Bussarsky VA (2008) Neuronavigated surgery of intracranial cavernomas – enthusiasm for high technologies or a gold standard? Folia Medica 50(2):11–17PubMedGoogle Scholar
  21. Ersahin M, Karaaslan N, Gurbuz MS et al. (2011) The safety and diagnostic value of frame-based and CT-guided stereotactic brain biopsy technique. Turk Neurosurg 21(4):582–590PubMedGoogle Scholar
  22. Esposito V, Paolini S, Morace R et al. (2008) Intraoperative localization of subcortical brain lesions. Acta Neurochir 150(6):537–542; discussion 543PubMedCrossRefGoogle Scholar
  23. Fei Z, Zhang X, Jiang XF, Liu WP, Wang XL, Xie L (2007) Removal of large benign cephalonasal tumours by transbasal surgery combined with endonasal endoscopic sinus surgery and neuronavigation. J Craniomaxillofac Surg 35(1):30–34PubMedCrossRefGoogle Scholar
  24. Floeth FW, Pauleit D, Wittsack HJ et al. (2005) Multimodal metabolic imaging of cerebral gliomas: positron emission tomography with [18F]fluoroethyl-L-tyrosine and magnetic resonance spectroscopy. J Neurosurg 102(2):318–327PubMedCrossRefGoogle Scholar
  25. Franz MO, Mallot HA (2000) Biometric robot navigation. Robotics and Autonomous Systems 30:133–153CrossRefGoogle Scholar
  26. Fronda C, Miller D, Kappus C, Bertalanffy H, Sure U (2008) The benefit of image guidance for the contralateral interhemispheric approach to the lateral ventricle. Clin Neurol Neurosurg 110(6):580–586PubMedCrossRefGoogle Scholar
  27. Giese H, Hoffmann KT, Winkelmann A, Stockhammer F, Jallo GI, Thomale UW (2010) Precision of navigated stereotactic probe implantation into the brainstem. J Neurosurg Pediatr 5(4):350–359PubMedCrossRefGoogle Scholar
  28. Gralla J, Nimsky C, Buchfelder M, Fahlbusch R, Ganslandt O (2003a) Frameless stereotactic brain biopsy procedures using the Stealth Station: indications, accuracy and results. Zentralbl Neurochir 64(4):166–170PubMedCrossRefGoogle Scholar
  29. Gralla J, Ganslandt O, Kober H, Buchfelder M, Fahlbusch R, Nimsky C (2003b) Image-guided removal of supratentorial cavernomas in critical brain areas: application of neuronavigation and intraoperative magnetic resonance imaging. Minim Invasive Neurosurg 46(2):72–77PubMedCrossRefGoogle Scholar
  30. Gupta N, Berger MS (2003) Brain mapping for hemispheric tumors in children. Pediatr Neurosurg 38(6):302–306PubMedCrossRefGoogle Scholar
  31. Hayhurst C, Beems T, Jenkinson MD et al. (2010) Effect of electromagnetic-navigated shunt placement on failure rates: a prospective multicenter study. J Neurosurg 113(6):1273–1278PubMedCrossRefGoogle Scholar
  32. Hermann EJ, Capelle HH, Tschan CA, Krauss JK (2012). Electromagnetic-guided neuronavigation for safe placement of intraventricular catheters in Pediatr Neurosurg. J Neurosurg Pediatr 10(4):327–333PubMedCrossRefGoogle Scholar
  33. Heussinger N, Eyupoglu IY, Ganslandt O, Finzel S, Trollmann R, Jungert J (2013) Ultrasound-guided neuronavigation improves safety of ventricular catheter insertion in preterm infants. Brain Dev 35(10):905–911PubMedCrossRefGoogle Scholar
  34. Hott JS, Papadopoulos SM, Theodore N, Dickman CA, Sonntag VK (2004a) Intraoperative Iso-C C-arm navigation in cervical spinal surgery: review of the first 52 cases. Spine 29(24):2856–2860PubMedCrossRefGoogle Scholar
  35. Hott JS, Deshmukh VR, Klopfenstein JD et al. (2004b) Intraoperative Iso-C C-arm navigation in craniospinal surgery: the first 60 cases. Neurosurgery 54(5):1131–1136; discussion 1136–1137PubMedCrossRefGoogle Scholar
  36. Ibrahim AA, Magdy EA, Eid M (2012) Endoscopic endonasal multilayer repair of traumatic ethmoidal roof cerebrospinal fluid rhinorrhea in children. Int J Pediatr Otorhinolaryngol 76(4):523–529PubMedCrossRefGoogle Scholar
  37. Jagannathan J, Prevedello DM, Ayer VS, Dumont AS, Jane JA, Jr., Laws ER (2006) Computer-assisted frameless stereotaxy in transsphenoidal surgery at a single institution: review of 176 cases. Neurosurg Focus 20(2):E9PubMedCrossRefGoogle Scholar
  38. Jea A, Vachhrajani S, Johnson KK, Rutka JT (2008) Corpus callosotomy in children with intractable epilepsy using frameless stereotactic neuronavigation: 12-year experience at the Hospital for Sick Children in Toronto. Neurosurg Focus 25(3):E7PubMedCrossRefGoogle Scholar
  39. Jo KW, Shin HJ, Nam DH et al. (2011a) Efficacy of endoport-guided endoscopic resection for deep-seated brain lesions. Neurosurg Rev 34(4):457–463PubMedCrossRefGoogle Scholar
  40. Jo KI, Chung SB, Jo KW, Kong DS, Seol HJ, Shin HJ (2011b) Microsurgical resection of deep-seated lesions using transparent tubular retractor: pediatric case series. Childs Nerv Syst 27(11):1989–1994PubMedCrossRefGoogle Scholar
  41. Kanno H, Ozawa Y, Sakata K et al. (2005) Intraoperative power Doppler ultrasonography with a contrast-enhancing agent for intracranial tumors. J Neurosurg 102(2):295–301PubMedCrossRefGoogle Scholar
  42. Kaya S, Deniz S, Duz B, Daneyemez M, Gonul E (2012) Use of an ultra-low field intraoperative MRI system for pediatric brain tumor cases: initial experience with 'PoleStar N20'. Turk Neurosurg 22(2):218–225PubMedGoogle Scholar
  43. Kinoshita M, Yamada K, Hashimoto N et al. (2005) Fiber-tracking does not accurately estimate size of fiber bundle in pathological condition: initial neurosurgical experience using neuronavigation and subcortical white matter stimulation. NeuroImage 25(2):424–429PubMedCrossRefGoogle Scholar
  44. Kosnik-Infinger L, Glazier SS, Frankel BM (2013) Occipital condyle to cervical spine fixation in the pediatric population. J Neurosurg Pediatr 13(1):45–53PubMedCrossRefGoogle Scholar
  45. Kral F, Puschban EJ, Riechelmann H, Freysinger W (2013) Comparison of optical and electromagnetic tracking for navigated lateral skull base surgery. Int J Med Robot 9(2):247–252PubMedCrossRefGoogle Scholar
  46. Kremer P, Tronnier V, Steiner HH et al. (2006) Intraoperative MRI for interventional neurosurgical procedures and tumor resection control in children. Childs Nerv Syst 22(7):674–678PubMedCrossRefGoogle Scholar
  47. Levitt MR, O'Neill BR, Ishak GE et al. (2012) Image-guided cerebrospinal fluid shunting in children: catheter accuracy and shunt survival. J Neurosurg Pediatr 10(2):112–117PubMedCrossRefGoogle Scholar
  48. Levy R, Cox RG, Hader WJ, Myles T, Sutherland GR, Hamilton MG (2009) Application of intraoperative high-field magnetic resonance imaging in Pediatr Neurosurg. J Neurosurg Pediatr 4(5):467–474PubMedCrossRefGoogle Scholar
  49. Lobao CA, Nogueira J, Souto AA, Oliveira JA (2009) Cerebral biopsy: comparison between frame-based stereotaxy and neuronavigation in an oncology center. Arq Neuropsiquiatr 67(3B):876–881PubMedCrossRefGoogle Scholar
  50. Lunsford LD, Khan AA, Niranjan A, Kano H, Flickinger JC, Kondziolka D (2010) Stereotactic radiosurgery for symptomatic solitary cerebral cavernous malformations considered high risk for resection. J Neurosurg 113(1):23–29PubMedCrossRefGoogle Scholar
  51. McGirt MJ, Woodworth GF, Coon AL et al. (2005) Independent predictors of morbidity after image-guided stereotactic brain biopsy: a risk assessment of 270 cases. J Neurosurg 102(5):897–901PubMedCrossRefGoogle Scholar
  52. Messing-Junger AM, Floeth FW, Pauleit D et al. (2002) Multimodal target point assessment for stereotactic biopsy in children with diffuse bithalamic astrocytomas. Childs Nerv Syst 18(8):445–449PubMedCrossRefGoogle Scholar
  53. Modi HN, Suh SW, Fernandez H, Yang JH, Song HR (2008) Accuracy and safety of pedicle screw placement in neuromuscular scoliosis with free-hand technique. Eur Spine J 17(12):1686–1696PubMedPubMedCentralCrossRefGoogle Scholar
  54. Modi H, Suh SW, Song HR, Yang JH (2009) Accuracy of thoracic pedicle screw placement in scoliosis using the ideal pedicle entry point during the freehand technique. Int Orthop 33(2):469–475PubMedCrossRefGoogle Scholar
  55. Ng YT, Rekate HL, Prenger EC et al. (2008) Endoscopic resection of hypothalamic hamartomas for refractory symptomatic epilepsy. Neurology 70(17):1543–1548PubMedCrossRefGoogle Scholar
  56. Ng WH, Mukhida K, Rutka JT (2010) Image guidance and neuromonitoring in neurosurgery. Childs Nerv Syst 26(4):491–502PubMedCrossRefGoogle Scholar
  57. Nimsky C, Buchfelder M (2003) Neuronavigation in epilepsy surgery. Arq Neuropsiquiatr 61 Suppl 1:109–114PubMedGoogle Scholar
  58. Nimsky C, Ganslandt O, Gralla J, Buchfelder M, Fahlbusch R (2003) Intraoperative low-field magnetic resonance imaging in Pediatr Neurosurg. Pediatr Neurosurg 38(2):83–89PubMedCrossRefGoogle Scholar
  59. Ochi A, Otsubo H (2008) Magnetoencephalography-guided epilepsy surgery for children with intractable focal epilepsy: SickKids experience. Int J Psychophysiol 68(2):104–110PubMedCrossRefGoogle Scholar
  60. Oertel J, Gaab MR, Runge U, Schroeder HW, Wagner W, Piek J (2004) Neuronavigation and complication rate in epilepsy surgery. Neurosurg Rev 27(3):214–217PubMedCrossRefGoogle Scholar
  61. Owen CM, Linskey ME (2009) Frame-based stereotaxy in a frameless era: current capabilities, relative role, and the positive- and negative predictive values of blood through the needle. J Neurooncol 93(1):139–149PubMedCrossRefGoogle Scholar
  62. Park YS, Lee YH, Shim KW et al. (2009) Insular epilepsy surgery under neuronavigation guidance using depth electrode. Childs Nerv Syst 25(5):591–597PubMedCrossRefGoogle Scholar
  63. Pirotte B, Goldman S, Van Bogaert P et al. (2005) Integration of [11C]methionine-positron emission tomographic and magnetic resonance imaging for image-guided surgical resection of infiltrative low-grade brain tumors in children. Neurosurgery 57(1 Suppl):128–139; discussion 128–139PubMedGoogle Scholar
  64. Pirotte B, Lubansu A, Massager N et al. (2010) Clinical impact of integrating positron emission tomography during surgery in 85 children with brain tumors. J Neurosurg Pediatr 5(5):486–499PubMedCrossRefGoogle Scholar
  65. Polkey CE (2003) Resective surgery for hypothalamic hamartoma. Epileptic Disord 5(4):281–286PubMedGoogle Scholar
  66. Polkey CE (2004) Clinical outcome of epilepsy surgery. Curr Opin Neurol 17(2):173–178PubMedCrossRefGoogle Scholar
  67. Qiao L, Xue T, Zha DJ et al. (2011) Determining leak locations during transnasal endoscopic repair of cerebrospinal fluid rhinorrhea. Auris Nasus Larynx 38(3):335–339PubMedCrossRefGoogle Scholar
  68. Qiu TM, Zhang Y, Wu JS et al. (2010) Virtual reality presurgical planning for cerebral gliomas adjacent to motor pathways in an integrated 3-D stereoscopic visualization of structural MRI and DTI tractography. Acta Neurochir 152(11):1847–1857PubMedCrossRefGoogle Scholar
  69. Reavey-Cantwell JF, Bova FJ, Pincus DW (2006) Frameless, pinless stereotactic neurosurgery in children. J Neurosurg 104(6 Suppl):392–395PubMedGoogle Scholar
  70. Recinos PF, Raza SM, Jallo GI, Recinos VR (2011) Use of a minimally invasive tubular retraction system for deep-seated tumors in pediatric patients. J Neurosurg Pediatr 7(5):516–521PubMedCrossRefGoogle Scholar
  71. Reig AS, Stevenson CB, Tulipan NB (2010) CT-based, fiducial-free frameless stereotaxy for difficult ventriculoperitoneal shunt insertion: experience in 26 consecutive patients. Stereotact Funct Neurosurg 88(2):75–80PubMedCrossRefGoogle Scholar
  72. Ren H, Chen X, Sun G et al. (2013) Resection of subependymal giant cell astrocytoma guided by intraoperative magnetic resonance imaging and neuronavigation. Childs Nerv Syst 29(7):1113–1121PubMedCrossRefGoogle Scholar
  73. Rohde V, Behm T, Ludwig H, Wachter D (2012) The role of neuronavigation in intracranial endoscopic procedures. Neurosurg Rev 35(3):351–358PubMedCrossRefGoogle Scholar
  74. Rohde V, Spangenberg P, Mayfrank L, Reinges M, Gilsbach JM, Coenen VA (2005) Advanced neuronavigation in skull base tumors and vascular lesions. Minim Invasive Neurosurg 48(1):13–18PubMedCrossRefGoogle Scholar
  75. Roth J, Biyani N, Beni-Adani L, Constantini S (2007) Real-time neuronavigation with high-quality 3D ultrasound SonoWand in Pediatr Neurosurg. Pediatr Neurosurg 43(3):185–191PubMedCrossRefGoogle Scholar
  76. Sadda P, Azimi E, Jallo G, Doswell J, Kazanzides P (2013) Surgical navigation with a head-mounted tracking system and display. Stud Health Technol Inform 184:363–369PubMedGoogle Scholar
  77. Samdani A, Jallo GI (2007) Intraoperative MRI: technology, systems, and application to pediatric brain tumors. Surg Technol Int 16:236–243PubMedGoogle Scholar
  78. Schicho K, Figl M, Seemann R et al. (2007) Comparison of laser surface scanning and fiducial marker-based registration in frameless stereotaxy. Technical note. J Neurosurg 106(4):704–709PubMedCrossRefGoogle Scholar
  79. Schlaier J, Warnat J, Brawanski A (2002) Registration accuracy and practicability of laser-directed surface matching. Comput Aided Surg 7(5):284–290PubMedCrossRefGoogle Scholar
  80. Schulz M, Bohner G, Knaus H, Haberl H, Thomale UW (2010) Navigated endoscopic surgery for multiloculated hydrocephalus in children. J Neurosurg Pediatr 5(5):434–442PubMedCrossRefGoogle Scholar
  81. Shirane R, Kumabe T, Yoshida Y et al. (2001) Surgical treatment of posterior fossa tumors via the occipital transtentorial approach: evaluation of operative safety and results in 14 patients with anterosuperior cerebellar tumors. J Neurosurg 94(6):927–935PubMedCrossRefGoogle Scholar
  82. Spalice A, Ruggieri M, Grosso S et al. (2010) Dysembryoplastic neuroepithelial tumors: a prospective clinicopathologic and outcome study of 13 children. Pediatric neurology 43(6):395–402PubMedCrossRefGoogle Scholar
  83. Stefan H, Nimsky C, Scheler G et al. (2007) Periventricular nodular heterotopia: A challenge for epilepsy surgery. Seizure 16(1):81–86PubMedCrossRefGoogle Scholar
  84. Stieglitz LH, Giordano M, Samii M, Luedemann WO (2010) A new tool for frameless stereotactic placement of ventricular catheters. Neurosurgery 67(3 Suppl Operative):ons131–135; discussion ons135Google Scholar
  85. Stone SS, Rutka JT (2008) Utility of neuronavigation and neuromonitoring in epilepsy surgery. Neurosurg Focus 25(3):E17PubMedCrossRefGoogle Scholar
  86. Surbeck W, Bouthillier A, Weil AG et al. (2011) The combination of subdural and depth electrodes for intracranial EEG investigation of suspected insular (perisylvian) epilepsy. Epilepsia 52(3):458–466PubMedCrossRefGoogle Scholar
  87. Thomale UW, Knitter T, Schaumann A et al. (2013) Smartphone-assisted guide for the placement of ventricular catheters. Childs Nerv Syst 29(1):131–139PubMedCrossRefGoogle Scholar
  88. Thompson EM, Anderson GJ, Roberts CM, Hunt MA, Selden NR (2011) Skull-fixated fiducial markers improve accuracy in staged frameless stereotactic epilepsy surgery in children. J Neurosurg Pediatr 7(1):116–119PubMedCrossRefGoogle Scholar
  89. Tirakotai W, Riegel T, Sure U, Bozinov O, Hellwig D, Bertalanffy H (2004) Clinical application of neuro-navigation in a series of single burr-hole procedures. Zentralbl Neurochir 65(2):57–64PubMedCrossRefGoogle Scholar
  90. Tovar-Spinoza ZS, Ochi A, Rutka JT, Go C, Otsubo H (2008) The role of magnetoencephalography in epilepsy surgery. Neurosurg Focus 25(3):E16PubMedCrossRefGoogle Scholar
  91. Tsioulos K, Del Pero MM, Philpott C (2013) Pneumatisation of turbinates and paranasal sinuses in children: case report. J Laryngol Otol 127(4):419–422PubMedCrossRefGoogle Scholar
  92. Tuominen J, Yrjana SK, Katisko JP, Heikkila J, Koivukangas J (2003) Intraoperative imaging in a comprehensive neuronavigation environment for minimally invasive brain tumour surgery. Acta Neurochir. Supplement 85:115–120CrossRefGoogle Scholar
  93. Turner MS, Nguyen HS, Payner TD, Cohen-Gadol AA (2011) A novel method for stereotactic, endoscope-assisted transtentorial placement of a shunt catheter into symptomatic posterior fossa cysts. J Neurosurg Pediatr 8(1):15–21PubMedCrossRefGoogle Scholar
  94. Ulrich NH, Burkhardt JK, Serra C, Bernays RL, Bozinov O (2012) Resection of pediatric intracerebral tumors with the aid of intraoperative real-time 3-D ultrasound. Childs Nerv Syst 28(1):101–109PubMedCrossRefGoogle Scholar
  95. Van Gompel JJ, Meyer FB, Marsh WR, Lee KH, Worrell GA (2010) Stereotactic electroencephalography with temporal grid and mesial temporal depth electrode coverage: does technique of depth electrode placement affect outcome? J Neurosurg 113(1):32–38PubMedPubMedCentralCrossRefGoogle Scholar
  96. van Lindert EJ, Ingels K, Mylanus E, Grotenhuis JA (2010) Variations of endonasal anatomy: relevance for the endoscopic endonasal transsphenoidal approach. Acta Neurochir 152(6):1015–1020PubMedPubMedCentralCrossRefGoogle Scholar
  97. M, Della Pepa GM, Doglietto F, Esposito G, La Rocca G, Massimi L (2011a) Video-assisted microsurgical transoral approach to the craniovertebral junction: personal experience in childhood. Childs Nerv Syst 27(5):825–831PubMedCrossRefGoogle Scholar
  98. M, Doglietto F, Della Pepa GM et al. (2011b) Endoscope-assisted microsurgical transoral approach to the anterior craniovertebral junction compressive pathologies. Eur Spine J 20(9):1518–1525PubMedPubMedCentralCrossRefGoogle Scholar
  99. Vitaz TW, Hushek S, Shields CB, Moriarty T (2003) Intraoperative MRI for pediatric tumor management. Acta Neurochir. Supplement 85:73–78CrossRefGoogle Scholar
  100. von Lehe M, Wellmer J, Urbach H, Schramm J, Elger CE, Clusmann H (2009) Epilepsy surgery for insular lesions. Rev Neurol 165(10):755–761CrossRefGoogle Scholar
  101. Wagner W, Gaab MR, Schroeder HW, Sehl U, Tschiltschke W (1999) Experiences with cranial neuronavigation in Pediatr Neurosurg. Pediatr Neurosurg 31(5):231–236PubMedCrossRefGoogle Scholar
  102. Winkler D, Trantakis C, Lindner D, Richter A, Schober J, Meixensberger J (2003) Improving planning procedure in brain biopsy: coupling frame-based stereotaxy with navigational device STP 4.0. Minim Invasive Neurosurg 46(1):37–40PubMedCrossRefGoogle Scholar
  103. Winkler D, Lindner D, Richter A, Meixensberger J, Schober J (2006a) The value of intraoperative smear examination of stereotaxic brain specimens. Minim Invasive Neurosurg 49(6):353–356PubMedCrossRefGoogle Scholar
  104. Winkler D, Lindner D, Strauss G, Richter A, Schober R, Meixensberger J (2006b) Surgery of cavernous malformations with and without navigational support – a comparative study. Minim Invasive Neurosurg 49(1):15–19PubMedCrossRefGoogle Scholar
  105. Woodworth GF, McGirt MJ, Elfert P, Sciubba DM, Rigamonti D (2005) Frameless stereotactic ventricular shunt placement for idiopathic intracranial hypertension. Stereotact Funct Neurosurg 83(1):12–16PubMedCrossRefGoogle Scholar
  106. Woodworth GF, McGirt MJ, Samdani A, Garonzik I, Olivi A, Weingart JD (2006) Frameless image-guided stereotactic brain biopsy procedure: diagnostic yield, surgical morbidity, and comparison with the frame-based technique. J Neurosurg 104(2):233–237PubMedCrossRefGoogle Scholar
  107. Wray CD, Kraemer DL, Yang T et al. (2011) Freehand placement of depth electrodes using electromagnetic frameless stereotactic guidance. J Neurosurg Pediatr 8(5):464–467PubMedCrossRefGoogle Scholar
  108. Wurm G, Fellner FA (2004) Implementation of T2*-weighted MR for multimodal image guidance in cerebral cavernomas. NeuroImage 22(2):841–846PubMedCrossRefGoogle Scholar
  109. Yousaf J, Avula S, Abernethy LJ, Mallucci CL (2012) Importance of intraoperative magnetic resonance imaging for pediatric brain tumor surgery. Surg Neurol Int 3(Suppl 2):S65–72Google Scholar
  110. Zhu FP, Wu JS, Song YY et al. (2012) Clinical application of motor pathway mapping using diffusion tensor imaging tractography and intraoperative direct subcortical stimulation in cerebral glioma surgery: a prospective cohort study. Neurosurgery 71(6):1170–1183; discussion 1183–1174PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  1. 1.Arbeitsbereich Kinderneurochirurgie, Campus Virchow KlinikumCharité Universitätsmedizin BerlinBerlinDeutschland

Personalised recommendations