Syringomyelie

Chapter

Zusammenfassung

Syringomyelie ist ein zystischer Hohlraum im Rückenmark, der eine Flüssigkeit enthält, die dem Liquor oder der Flüssigkeit des Extrazellulärraumes gleicht. Die Höhle kann aus einem erweiterten Zentralkanal entstehen oder im Parenchym des Rückenmarks selbst sein. Sie kann ausgekleidet sein mit Ependymzellen oder mit Gliazellen. Ihre Größe nimmt langsam über die Zeit zu. Die Ursache der Syringomyelie ist eine gestörte Pulsation des Liquors oder des Myelons, weshalb die operative Therapie, sofern diese notwendig ist, in der Beseitigung dieser Pulsationsbehinderung besteht. Die präoperative Diagnostik muss auf die Erkennung der Ursache ausgerichtet sein.

Literatur

  1. Batzdorf U (2000) Primary spinal syringomyelia: a personal perspective. Neurosurg Focus 8:1–4CrossRefGoogle Scholar
  2. Bertram C, Brodbelt A, Stoodley M (2005) The origins of syringomyelia: Numerical models of fluid/structure interactions in the spinal cord. J Biomech Eng 127:1099–1109CrossRefGoogle Scholar
  3. Bilston L, Fletcher D, Brodbelt A, Stoodley M (2003) Arterial pulsation-driven cerebrospinal fluid flow in the perivascular space: A computational model. Comput Methods Biomech Biomed Engin 6:235–241CrossRefGoogle Scholar
  4. Boulay G (1966) Pulsatile movements in the CSF pathways. Br J Radiol 39:255–262CrossRefGoogle Scholar
  5. Chiari H (1891) Über die Veränderungen des Kleinhirns in Folge von Hydrocephalie des Grosshirns. Dtsch Med Wschr 17:1172–1175CrossRefGoogle Scholar
  6. Chiari H (1895) Über die Veränderungen des Kleinhirns, des Pons und der Medulla oblongata in Folge von congenitaler Hydrocephalie des Grosshirns. Denkschr Akad Wissensch Math Naturw Cl 63:71–116Google Scholar
  7. d'Angers CO (1827) Traite de la moelle epiniere et de ses maladies. Crevot, Paris, S 178–183Google Scholar
  8. Enzmann D, Pelc N (1991) Normal flow pattern of intracranial and spinal cerebrospinal fluid defined with phase-contrast cine MR imaging. Radiology 178:467–474CrossRefGoogle Scholar
  9. Enzmann D, Pelc N (1992) Brain Motion: Measurement with phase-contrats MR Imaging. Radiology 185:653–660CrossRefGoogle Scholar
  10. Fischbein N, Dillon W, Cobbs C, Winstein P (2000) The 'Presyrinx' state: Is there a reversible myelopathic condition that may precede syringomyelia? Neurosurg Focus 8:1–19Google Scholar
  11. Gardner W, Angel J (1959) The mechanism of syringomyelia and its surgical correction. Clin Neurosurg 6:131–140CrossRefGoogle Scholar
  12. Gardner W, Goodall R (1950) The surgical treatment of Arnold-Chiari malformation in adults: an explanation of its mechanism and importance of encephalography in diagnosis. J Neurosurg 7:199–206CrossRefGoogle Scholar
  13. Goel A, Desai K (2000) Surgery for syringomyelia: An analysis based on 163 surgical cases. Acta Neurochir 142:293–302CrossRefGoogle Scholar
  14. Gottschalk A, Schmitz B, Mauer UM et al. (2010) Dynamic visualization of arachnoid adhesions in a patient with idiopathic syringomyelia using high-resolution cine magnetic resonance imaging at 3T. JMRI 32:218–222CrossRefGoogle Scholar
  15. Greitz D (2006) Unraveling the riddle of syringomyelia. Neurosurg Rev 10:1–12Google Scholar
  16. Greitz D, Franck A, Nordell B (1993) On the pulsatile nature of intracranial and spinal CSF-circulation demonstrated by MR imaging. Acta Radiologica 34:321–328CrossRefGoogle Scholar
  17. Greitz D, Ericson K, Flodmark O (1999) Pathogenesis and mechanics of spinal cord cysts: a new hypothesis based on magnetic resonance studies of cerebrospinal fluid dynamics. Int J Neuroradiol 5:61–78Google Scholar
  18. Henry-Feugeas M, Idy-Peretti I, Blanchet B, Hassine D, Zannoli G, Schouman-Claeys E (1993) Temporal and spatial assessement of normal cerebrospinal fluid dynamics with MR imaging. Magn Res Imaging 11:1107–1118CrossRefGoogle Scholar
  19. Holly L, Batzdorf U (2002) Slitlike syrinx cavities: a persistent central canal. J Neurosurg Spine 97:161–165CrossRefGoogle Scholar
  20. Klekamp J, Samii M (2002) Syringomyelia – Diagnosis and treatment. Springer, BerlinCrossRefGoogle Scholar
  21. Klekamp J, Völkel K, Bartels C, Samii M (2001) Disturbances of cerebrospinal fluid flow attributable to arachnoid scarring cause interstitial edema of the cat spinal cord. Neurosurgery 48:174–186PubMedGoogle Scholar
  22. Klose U, Strik C, Kiefer C, Grodd W (2000) Detection of a relation between respiration and CSF pulsation with echoplanar technique. J Magn Reson Imag 11:438–444CrossRefGoogle Scholar
  23. Loth F, Yardimci M, Alperin N (2001) Hydrodynamic modeling of cerebrospinal fluid motion within the spinal cavity. J Biomech Eng 123:71–79PubMedGoogle Scholar
  24. Martin B, Kalata W, Loth F, Royston T, Oshinski J (2005) Syringomyelia hydrodynamics: An in vitro study based on in vivo measurements. J Biomech Eng 127:1110–1120CrossRefGoogle Scholar
  25. Mauer U, Freude G, Danz B, Kunz U (2008) Cardiac-gated phase-contrast MRI of CSF flow in the diagnosis of „idiopathic“ syringomyelia. Neurosurgery 63:1139–1144CrossRefGoogle Scholar
  26. Pinna G (2007) The pre-syrinx state: An appraisal. Br J Neurosurg 21:435Google Scholar
  27. Pschyrembel A (2002) Klinisches Wörterbuch. Walter de Gruyter, BerlinGoogle Scholar
  28. Quencer R, Post M, Hinks R (1990) Cine MR in the evaluation of normal and abnormal CSF flow: intracranial and intraspinal studies. Neuroradiology 32:371–391CrossRefGoogle Scholar
  29. Roser F, Ebner F, Danz S et al. (2008) Three-dimensional constructive interference in steady-state magnetic resonance imaging in syringomyelia: advantages over conventional imaging. J Neurosurg Spine 8:429–435CrossRefGoogle Scholar
  30. Schroth G (1991). Physiologie und Pathologie der intrakraniellen Liquordynamik. Jahrbuch der Radiologie, S 287–290Google Scholar
  31. Schroth G, Klose U (1992a) Cerebrospinal fluid flow – I. Physiology of cardiac-related pulsation. Neuroradiology 35:1–9PubMedGoogle Scholar
  32. Schroth G, Klose U (1992b) Cerebrospinal fluid flow – II. Physiology of respiration-related pulsations. Neuroradiology 35:10–15PubMedGoogle Scholar
  33. Schüppel O (1865) Über Hydromyelus. Arch Heilkd 6:289–315Google Scholar
  34. Sgouros S, Williams B (1995) A critical appraisal of drainage in syringomyelia. J Neurosurg 82:1–10CrossRefGoogle Scholar
  35. Sherman J, Citrin C, Gangarosa R, Bowen B (1986) The MR appearance of CSF pulsations in the spinal canal. Am J Neuroradiol 7:879–884PubMedGoogle Scholar
  36. Stoodley M, Brown S, Brown C, Jones N (1997) Arterial pulsation-dependent perivascular cerebrospinal fluid flow into the central canal in the sheep spinal cord. J Neurosurg 86:686–693CrossRefGoogle Scholar
  37. Stoodley M, Gutschmidt B, Jones N (1999) Cerebrospinal fluid flow in an animal model of noncommunicating syringomyelia. Neurosurgery 44:1065–1076CrossRefGoogle Scholar
  38. Stoodley M, Jones N, Yang L, Brown C (2000) Mechanisms underlying the formation and enlargement of noncommunicating syringomyelia: experimental studies. Neurosurg Focus 8:E7CrossRefGoogle Scholar
  39. Weber F, Knopf H (2006) Incidential findings in magnetic resonance imaging of the brains of healthy young men. J Neurol Sci 240:81–84CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  1. 1.Klinik für NeurochirurgieBundeswehrkrankenhaus UlmUlmDeutschland

Personalised recommendations