Skip to main content

Template-Directed Macroporous ‘Bubble’ Graphene Film for the Application in Supercapacitors

  • Chapter
  • First Online:
Surface Chemistry and Macroscopic Assembly of Graphene for Application in Energy Storage

Part of the book series: Springer Theses ((Springer Theses))

  • 1104 Accesses

Abstract

Nanostructured carbon with assembled building blocks in diverse scales is of great importance for energy storage [13]. Graphene, as a two-dimensional crystal composed by sp2 carbon atoms, has been assembled into three-dimensional (3D) macroscopic fibers [4], films [5, 6] and hybrids [7, 8], as well as porous materials [912] with multifunctional properties and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhai YP, Dou YQ, Zhao DY, Fulvio PF, Mayes RT, Dai S. Carbon materials for chemical capacitive energy storage. Adv Mater. 2011;23(42):4828–50.

    Article  Google Scholar 

  2. Liu R, Duay J, Lee SB. Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chem Commun. 2011;47(5):1384–404.

    Article  Google Scholar 

  3. Su DS, Schlogl R. Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. ChemSusChem. 2010;3(2):136–68.

    Article  Google Scholar 

  4. Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat Commun. 2011;2:1–9.

    Google Scholar 

  5. Chen C, Yang Q-H, Yang Y, Lv W, Wen Y, Hou P-X, et al. Self-assembled free-standing graphite oxide membrane. Adv Mater. 2009;21(29):3007–11.

    Article  Google Scholar 

  6. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, et al. Preparation and characterization of graphene oxide paper. Nature. 2007;448(7152):457–60.

    Article  Google Scholar 

  7. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, et al. Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol. 2008;3(6):327–31.

    Article  Google Scholar 

  8. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, et al. Graphene-based composite materials. Nature. 2006;442(7100):282–6.

    Article  Google Scholar 

  9. Xiao J, Mei DH, Li XL, Xu W, Wang DY, Graff GL, et al. Hierarchically porous graphene as a lithium-air battery electrode. Nano Lett. 2011;11(11):5071–8.

    Article  Google Scholar 

  10. Worsley MA, Pauzauskie PJ, Olson TY, Biener J, Satcher JH Jr, Baumann TF. Synthesis of graphene aerogel with high electrical conductivity. J Am Chem Soc. 2010;132(40):14067–9.

    Article  Google Scholar 

  11. Lee SH, Kim HW, Hwang JO, Lee WJ, Kwon J, Bielawski CW, et al. Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films. Angew Chem Int Ed. 2010;49(52):10084–8.

    Article  Google Scholar 

  12. Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H-M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater. 2011;10(6):424–8.

    Article  Google Scholar 

  13. An SJ, Zhu YW, Lee SH, Stoller MD, Emilsson T, Park S, et al. Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition. J Phys Chem Lett. 2010;1(8):1259–63.

    Article  Google Scholar 

  14. Chen C-M, Huang J-Q, Zhang Q, Gong W-Z, Yang Q-H, Wang M-Z, et al. Annealing a graphene oxide film to produce a free standing high conductive graphene film. Carbon. 2012;50(2):659–67.

    Article  Google Scholar 

  15. Wei W, Lu W, Yang QH. High-concentration graphene aqueous suspension and a membrane self-assembled at the liquid-air interface. New Carbon Mater. 2011;26(1):36–40.

    Google Scholar 

  16. Lv W, Xia ZX, Wu SD, Tao Y, Jin FM, Li BH, et al. Conductive graphene-based macroscopic membrane self-assembled at a liquid-air interface. J Mater Chem. 2011;21(10):3359–64.

    Article  Google Scholar 

  17. Tang ZH, Zhuang J, Wang X. Exfoliation of graphene from graphite and their self-assembly at the oil-water interface. Langmuir. 2010;26(11):9045–9.

    Article  Google Scholar 

  18. Fan ZJ, Yan J, Wei T, Ning GQ, Zhi LJ, Liu JC, et al. Nanographene-constructed carbon nanofibers grown on graphene sheets by chemical vapor deposition: high-performance anode materials for lithium ion batteries. ACS Nano. 2011;5(4):2787–94.

    Article  Google Scholar 

  19. Fan ZJ, Yan J, Zhi LJ, Zhang Q, Wei T, Feng J, et al. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater. 2010;22(33):3723–8.

    Article  Google Scholar 

  20. Tung VC, Chen L-M, Allen MJ, Wassei JK, Nelson K, Kaner RB, et al. Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett. 2009;9(5):1949-55F.

    Google Scholar 

  21. Wu Z-S, Ren W, Wen L, Gao L, Zhao J, Chen Z, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano. 2010;4(6):3187–94.

    Article  Google Scholar 

  22. Si Y, Samulski ET. Exfoliated graphene separated by platinum nanoparticles. Chem Mater. 2008;20(21):6792–7.

    Article  Google Scholar 

  23. Wang G, Wang B, Wang X, Park J, Dou S, Ahn H, et al. Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J Mater Chem. 2009;19(44):8378–84.

    Article  Google Scholar 

  24. Mai YJ, Wang XL, Xiang JY, Qiao YQ, Zhang D, Gu CD, et al. CuO/graphene composite as anode materials for lithium-ion batteries. Electrochim Acta. 2011;56(5):2306–11.

    Article  Google Scholar 

  25. Yan J, Wei T, Shao B, Ma F, Fan Z, Zhang M, et al. Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors. Carbon. 2010;48(6):1731–7.

    Article  Google Scholar 

  26. Yang X, Zhu J, Qiu L, Li D. Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv Mater. 2011;23(25):2833–8.

    Article  Google Scholar 

  27. Eswaraiah V, Sankaranarayanan V, Ramaprabhu S. Functionalized graphene-PVDF foam composites for EMI shielding. Macromol Mater Eng. 2011;296(10):894–8.

    Article  Google Scholar 

  28. Worsley MA, Olson TY, Lee JRI, Willey TM, Nielsen MH, Roberts SK, et al. High surface area, sp2-cross-linked three-dimensional graphene monoliths. J Phys Chem Lett. 2011;2(8):921–5.

    Article  Google Scholar 

  29. Lin Y, Ehlert GJ, Bukowsky C, Sodano HA. Superhydrophobic functionalized graphene aerogels. ACS Appl Mater Interf. 2011;3(7):2200–3.

    Article  Google Scholar 

  30. Chen WF, Li SR, Chen CH, Yan LF. Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv Mater. 2011;23(47):5679–83.

    Google Scholar 

  31. Zhang X, Sui Z, Xu B, Yue S, Luo Y, Zhan W, et al. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J Mater Chem. 2011;21(18):6494–7.

    Article  Google Scholar 

  32. Vickery JL, Patil AJ, Mann S. Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. Adv Mater. 2009;21(21):2180–4.

    Google Scholar 

  33. Liu F, Seo TS. A controllable self-assembly method for large-scale synthesis of graphene sponges and free-standing graphene films. Adv Funct Mater. 2010;20(12):1930–6.

    Article  Google Scholar 

  34. Shao JJ, Wu SD, Zhang SB, Lv W, Su FY, Yang QH. Graphene oxide hydrogel at solid/liquid interface. Chem Commun. 2011;47(20):5771–3.

    Article  Google Scholar 

  35. Guo X, Zhang F, Evans DG, Duan X. Layered double hydroxide films: synthesis, properties and applications. Chem Commun. 2010;46(29):5197–210.

    Article  Google Scholar 

  36. Yang XW, He YS, Liao XZ, Ma ZF. Improved graphene film by reducing restacking for lithium ion battery applications. Acta Phys-Chim Sin. 2011;27(11):2583–6.

    Google Scholar 

  37. Fan D, Liu Y, He J, Zhou Y, Yang Y. Porous graphene-based materials by thermolytic cracking. J Mater Chem. 2012;22(4):1396–402.

    Article  Google Scholar 

  38. Chen CM, Zhang Q, Huang CH, Zhao XC, Zhang BS, Kong QQ, et al. Macroporous ‘bubble’ graphene film via template-directed ordered-assembly for high rate supercapacitor. Chem Commun. 2012;48:7149–51.

    Article  Google Scholar 

  39. Jang JH, Kato A, Machida K, Naoi K. Supercapacitor performance of hydrous ruthenium oxide electrodes prepared by electrophoretic deposition. J Electrochem Soc. 2006;153(2):A321–8.

    Article  Google Scholar 

  40. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, et al. Carbon-based supercapacitors produced by activation of graphene. Science. 2011;332(6037):1537–41.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Meng Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, CM. (2016). Template-Directed Macroporous ‘Bubble’ Graphene Film for the Application in Supercapacitors. In: Surface Chemistry and Macroscopic Assembly of Graphene for Application in Energy Storage. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48676-4_5

Download citation

Publish with us

Policies and ethics