Skip to main content

Free-Standing Graphene Film with High Conductivity by Thermal Reduction of Self-assembled Graphene Oxide Film

  • Chapter
  • First Online:
Surface Chemistry and Macroscopic Assembly of Graphene for Application in Energy Storage

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Graphene, as a two-dimensional crystal of sp2 conjugated carbon atoms, is viewed as a building block for carbonaceous materials of other dimensionalities including zero-dimensional fullerenes, one-dimensional carbon nanotubes, and three-dimensional (3D) graphite [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–9.

    Article  Google Scholar 

  2. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia YY, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45(7):1558–65.

    Article  Google Scholar 

  3. Wei W, Yang SB, Zhou HX, Lieberwirth I, Feng XL, Müllen K. 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv Mater. 2013;22:2909–14.

    Article  Google Scholar 

  4. Gong YJ, Yang SB, Zhan L, Ma LL, Vajtai R, Ajayan PM. A bottom-up approach to build 3D architectures from nanosheets for superior lithium storage. Adv Funct Mater. 2014;24:125–30.

    Article  Google Scholar 

  5. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, et al. Preparation and characterization of graphene oxide paper. Nature. 2007;448(7152):457–60.

    Article  Google Scholar 

  6. Chen CM, Yang QH, Yang YG, Lv W, Wen YF, Hou PX, et al. Self-assembled free-standing graphite oxide membrane. Adv Mater. 2009;21(29):3007–11.

    Article  Google Scholar 

  7. Kim F, Cote LJ, Huang JX. Graphene oxide: Surface activity and two-dimensional assembly. Adv Mater. 2010;22(17):1954–8.

    Article  Google Scholar 

  8. Xu YX, Bai H, Lu GW, Li C, Shi GQ. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 2008; 130(18): 5856.

    Google Scholar 

  9. An SJ, Zhu YW, Lee SH, Stoller MD, Emilsson T, Park S, et al. Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition. J Phys Chem Lett. 2010;1(8):1259–63.

    Article  Google Scholar 

  10. Yang XW, Zhu JW, Qiu L, Li D. Bioinspired effective prevention of restacking in multilayered graphene films: Towards the next generation of high-performance supercapacitors. Adv Mater. 2011;23(25):2833–8.

    Article  Google Scholar 

  11. Liu F, Seo TS. A controllable self-assembly method for large-scale synthesis of graphene sponges and free-standing graphene films. Adv Funct Mater. 2010;20(12):1930–6.

    Article  Google Scholar 

  12. Xu YX, Sheng KX, Li C, Shi GQ. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano. 2010;4(7):4324–30.

    Article  Google Scholar 

  13. Lee SH, Kim HW, Hwang JO, Lee WJ, Kwon J, Bielawski CW, et al. Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films. Angew Chem Int Ed. 2010;49(52):10084–8.

    Article  Google Scholar 

  14. Tang ZH, Shen SL, Zhuang J, Wang X. Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide. Angew Chem Int Ed. 2010;49(27):4603–7.

    Article  Google Scholar 

  15. Chen ZP, Ren WC, Gao LB, Liu BL, Pei SF, Cheng HM. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapor deposition. Nat Mater. 2011;10(6):424–8.

    Article  Google Scholar 

  16. Liu QF, Ishibashi A, Fujigaya T, Mimura K, Gotou T, Uera K, et al. Formation of self-organized graphene honeycomb films on substrates. Carbon. 2011;49(11):3424–9.

    Article  Google Scholar 

  17. Fan ZJ, Yan J, Zhi LJ, Zhang Q, Wei T, Feng J, et al. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater. 2010;22(33):3723–8.

    Article  Google Scholar 

  18. Lv RT, Cui TX, Jun MS, Zhang Q, Cao AY, Su DS, et al. Open-ended, N-doped carbon nanotube-graphene hybrid nanostructures as high-performance catalyst support. Adv Funct Mater. 2011;21(5):999–1006.

    Article  Google Scholar 

  19. Chen CM, Yang YG, Wen YF, Yang QH, Wang MZ. Preparation of ordered graphene-based conductive membrane. New Carbon Mater. 2008;23(4):345–50.

    Google Scholar 

  20. Pham VH, Cuong TV, Hur SH, Shin EW, Kim JS, Chung JS, et al. Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon. 2010;48(7):1945–51.

    Article  Google Scholar 

  21. Xu YF, Long GK, Huang L, Huang Y, Wan XJ, Ma YF, et al. Polymer photovoltaic devices with transparent graphene electrodes produced by spin-casting. Carbon. 2010;48(11):3308–11.

    Article  Google Scholar 

  22. Li XL, Zhang GY, Bai XD, Sun XM, Wang XR, Wang E, et al. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol. 2008;3(9):538–42.

    Article  Google Scholar 

  23. Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, et al. Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B. 2006;110(17):8535–9.

    Article  Google Scholar 

  24. Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol. 2008;3(5):270–4.

    Article  Google Scholar 

  25. Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon. 2009;47(1):145–52.

    Article  Google Scholar 

  26. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45(7):1558–65.

    Article  Google Scholar 

  27. Xu YX, Sheng KX, Li C, Shi GQ. Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide. J Mater Chem. 2011;21(20):7376–80.

    Article  Google Scholar 

  28. Shin HJ, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater. 2009;19(12):1987–92.

    Article  Google Scholar 

  29. Pei SF, Zhao JP, Du JH, Ren WC, Cheng HM. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon. 2010;48(15):4466–74.

    Article  Google Scholar 

  30. Fan ZJ, Wang K, Wei T, Yan J, Song LP, Shao B. An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon. 2010;48(5):1686–9.

    Article  Google Scholar 

  31. Gao W, Alemany LB, Ci LJ, Ajayan PM. New insights into the structure and reduction of graphite oxide. Nat Chem. 2009;1(5):403–8.

    Article  Google Scholar 

  32. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80(6):1339.

    Article  Google Scholar 

  33. Liu YZ, Li YF, Yang YG, Wen YF, Wang MZ. The effect of thermal treatment at low temperatures on graphene oxide films. New Carbon Mater. 2011;26(1):41–5.

    Google Scholar 

  34. Moon IK, Lee J, Ruoff RS, Lee H. Reduced graphene oxide by chemical graphitization. Nat Comm. 2010;1:73.

    Article  Google Scholar 

  35. Liu J, Jeong H, Liu J, Lee K, Park JY, Ahn YH, et al. Reduction of functionalized graphite oxides by trioctylphosphine in non-polar organic solvents. Carbon. 2010;48(8):2282–9.

    Article  Google Scholar 

  36. Liu JQ, Lin ZQ, Liu TJ, Yin ZY, Zhou XZ, Chen SF, et al. Multilayer stacked low-temperature-reduced graphene oxide films: Preparation, characterization, and application in polymer memory devices. Small. 2010;6(14):1536–42.

    Article  Google Scholar 

  37. Lai LF, Chen LW, Zhan D, Sun L, Liu JP, Lim SH, et al. One-step synthesis of NH2-graphene from in situ graphene-oxide reduction and its improved electrochemical properties. Carbon. 2011;49(10):3250–7.

    Article  Google Scholar 

  38. Peng X-Y, Liu X-X, Diamond D, Lau KT. Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor. Carbon. 2011;49(11):3488–96.

    Article  Google Scholar 

  39. Yan J, Wei T, Shao B, Ma FQ, Fan ZJ, Zhang ML, et al. Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors. Carbon. 2010;48(6):1731–7.

    Article  Google Scholar 

  40. Oberlin A. Carbonization and graphitization. Carbon. 1984;22(6):521–41.

    Article  Google Scholar 

  41. Figueiredo JL, Pereira MFR, Freitas MMA, Orfao JJM. Modification of the surface chemistry of activated carbons. Carbon. 1999;37(9):1379–89.

    Article  Google Scholar 

  42. Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB. Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem. 2010;2(7):581–7.

    Article  Google Scholar 

  43. Chen CM, Huang JQ, Zhang Q, Gong WZ, Yang QH, Wang MZ, et al. Annealing a graphene oxide film to produce a free standing high conductive graphene film. Carbon. 2012;50(2):659–67.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Meng Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, CM. (2016). Free-Standing Graphene Film with High Conductivity by Thermal Reduction of Self-assembled Graphene Oxide Film. In: Surface Chemistry and Macroscopic Assembly of Graphene for Application in Energy Storage. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48676-4_4

Download citation

Publish with us

Policies and ethics